Hybrid ResNet50-SVM Framework for Detecting Brain Tumors from MRI Images

Authors

  • Zouhir Iourzikene Laboratoire Mécanique des Solides et Systèmes (LMSS), Faculté de Technologie, Université M’Hamed BOUGARA de Boumerdes, 35000 Boumerdes, Algeria
  • Fawzi Gougam Laboratoire Mécanique des Solides et Systèmes (LMSS), Faculté de Technologie, Université M’Hamed BOUGARA de Boumerdes, 35000 Boumerdes, Algeria
  • Djamel Benazzouz Laboratoire Mécanique des Solides et Systèmes (LMSS), Faculté de Technologie, Université M’Hamed BOUGARA de Boumerdes, 35000 Boumerdes, Algeria

DOI:

https://doi.org/10.58681/ajrt.25090104

Keywords:

Cancer brain, MRI, Extraction features, SVM, Deep learning

Abstract

Brain tumors are abnormal cell proliferations that may develop within the brain and can be either non-cancerous (benign) or cancerous (malignant). They might arise primarily in the brain or spread to it from other regions through metastasis. The task of classifying brain images obtained from Magnetic Resonance Imaging (MRI) has gained significant importance in medical research. Recent studies increasingly adopt machine learning approaches to build predictive and diagnostic tools for healthcare applications. This study proposes a method for brain tumor detection using various MRI brain scans. Features are extracted by employing the ResNet50 deep convolutional neural network architecture. Subsequently, classification models based on Support Vector Machines (SVM) are implemented to perform tumor prediction.

Downloads

Published

30-12-2025

How to Cite

Iourzikene, Z., Gougam, F., & Benazzouz, D. (2025). Hybrid ResNet50-SVM Framework for Detecting Brain Tumors from MRI Images. Algerian Journal of Research and Technology (AJRT), 9(1), 36–51. https://doi.org/10.58681/ajrt.25090104