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Abstract. In this paper, we consider a Colpitts oscillatos as a model for nonlinear 

dynamic analysis. In particular, we perform a bifurcation analysis using a real and 

theorical model of the Colpitts oscillator. This analysis, simulated with Matlab, shows a 

difference between the two models while calculating their parameters. Moreover, in 

order to fixe the optimal values of the circuit’s component, spectrum simulation under 

ADS have been performed up to 1GHz. It shows a chaos bandwidth of 600 MHz. 
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INTRODUCTION  

The first demonstration of a chaotic system generated by a linear circuit has been achieved in 

1983, it is the so-called “Chua’s circuits” (Chua, 1994). On the other hand, this chaotic signal 

could be also generated using non-linear systems, however oscillators are strongly depending 

on the initial conditions of the system but could be controlled to achieve the desired chaotic 

signal (Chua, 1994; Kennedy, 1994). This important propriety paves the way to introduce 

such signals in the information coding system. Among the electronic circuits that fulfill this 

function, Colpitts oscillator is an interesting circuit with high non-linearity behavior and wide 
bandwidth (Chen et al., 2014 ; Liao et al., 2016 ; Tamasevicius et al., 2001).. 

These proprieties are the key enabling factors to implement such circuits in communication 

systems addressing coding and modulation (Volkovskii et al., 2005). It has been demonstrated 

in the bifurcation theory, the normal forms and the technique of communication could be 

useful to qualitatively characterize the different dynamic behavior shown by this oscillator 

(De Feo and Maggio, 2003). The approach that has been followed to obtain different 

equilibrium behaviors consists in selecting a model of the circuit which minimizes the main 

characteristics of the real Colpitts oscillator. Furthermore, we emphasize that the complex 

bifurcation structure exposed by the Colpitts oscillator gives a link to coexistence phenomena 

in a large area of parameter space. This paper is organized as flow: section 2: the real model 
of Colpitts oscillator and the bifurcation diagram are studied. Section 3: we present the ideal 
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2 model and we give the model based in ADS. As a conclusion, a comparison between the two 

models is reported in section 4. 
 

NONIDEAL MODEL 

We consider the circuit configuration depicted in Figure. 1. The circuit is biased by Vcc and 

the current I0 with a conductance G0 (De Feo and Maggio, 2003). 

 

 
Fig. 1. Circuit diagram of chaotic Colpitts oscillator. 

 

We consider the passive elements and the active element are neglected and the nonlinear 
model of the emitter base is presented by the following equation (Chua, 1994) : 

 𝑓(−𝑉𝑐2) = 𝐼𝑠𝑒𝑥𝑝 (
−𝑉𝑐2

𝑉𝑇
)  (1) 

With is common base forward short-circuit current gain of the transistor. After some 

transformations in the equations of states for the schematic in figure 1 (Feo et al., 2000), they 

can be written as follows: 

{
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{
 
 

 
 
(𝑦) = exp(−𝑦) − 1

𝑘 =  
𝐶2

𝐶1+𝐶2
𝑄0= 𝐺0𝑊0

𝑄=
𝑊0𝐿

𝑅

𝑔∗ = 
𝐿𝐼0

(𝐶1+𝐶2)𝑅1𝑉𝑇

(3) 

  

Bifurcation diagram for reel circuit 

In this part, we will analyze the bifurcation diagram of a real model and compare the results 

with the ideal model. 
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(a)                                                                                 (b) 

Fig.2. Bifurcation diagram real circuit :(a). As a function of the parameter g*, (b) as a 

function of the parameter Q0. 

 

This diagram is obtained by plotting the maxima of the state x2 as a function of the two 

parameters g and q0 and all the other parameters are fixed. For the values of g*=1.2; Q0=0.8, 

the condition of Barkhaussen is satisfied and it presents the first sinusoidal oscillation. The 
first doubling of period will appear for g*=2.7; Q0=0.75.This bifurcation continuous to a 

critical value of g*=3.6, Q0=0.45 corresponding to the appearance of a chaotic behavior. 

 

IDEAL MODEL 

For G0 → 0 ⇒ Q0 ⟶ 0 , and  = 1, the real model will be idealized and the number of 

parameters will be reduced, consequently, the analysis of the system will be simplified. In this 

case, the system depends only on g, this parameter allows a physical interpretation in terms of 

ideal model of oscillator, and mainly g defines the oscillation conditions and satisfies 

Criterion of Barkhausen (Feo et al., 2000). We note that idealizing circuit does not affect the 

dynamics of the oscillator. 

{
 
 

 
 �̇� =  

𝑔∗

𝑄(1−𝑘)
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𝑄𝑘
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(4) 

 

Bifurcation diagram for ideal circuit 

Figure 3 shows the bifurcation diagram of the ideal circuit with g* parameter dependence. For 

g*=1.1 a sinusoidal oscillation is obtained corresponding to a limit cycle. When the value of g 
increases gradually, the changes have occurred at g* = 2.6, g*= 3.5 respectively. It is the 

transition from a two period oscillation to a chaotic oscillation through period doublings. 
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Fig.3. Bigurcation diagram for ideal model. 

 

 
Fig. 4. The phase space of Colpitts oscillator. 

 

Figure 4 illustrates the phase space of ideal model for value of g * = 4.15, the strange attractor 

is obtained by plotting state y versus x of the system. 

 

Simulation results 

To improve control of current I0 we replace the current source with voltage source V2 and 

resistance R2 as shown in figure 5. The transistor used, is a bipolar transistor (BFP193) with fT 

of 8GHz. The transistor is described in the simulations using a nonlinear ADS model. 

 

 
Fig.5. Simulation circuit of Colpitts oscillator. 
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The results of the simulations based on ADS model are shown by figure 6. 
 

 
(a)                                                                                 (b) 

 
(c) 

Fig.6. Simulation results: (a) frequency spectrum (b) output voltage (c) the phase diagram of 

Colpitts oscillator. 

 

The elements of this circuit determines the fundamental frequency of the chaotic signal given 

by: 

𝑓0 =
1

2𝜋√
𝐿1𝐶1𝐶2
𝐶1+ 𝐶2

= 292𝑀𝐻𝑧 (5) 

 

The frequency spectrum is reported in figure 6 (a), it shows a spectrum up to 1 GHz with a 

large bandwidth of 600 MHz corresponding to different amplitudes (-50db to -10db). Figure 6 

(b) shows the output signal of several Vc2 as a function of the time and figure 6 (c) shows the 

phase diagram of the oscillator: the output Vc2 corresponds to the emitter base voltage of the 

transistor (Vc2=-Vbe) and Vc1 corresponds to the collector emitter voltage (Vc1=Vce). 

 

CONCLUSION 

In this paper, we presented an analysis and comparaison of the bifurcation diagram for 
Colpitts oscillator in both ideal and real circuits. This analysis reveals that the main difference 

between the two models remins on how the harmonic cycle is created . In other words, we can 

say that in the real model, the harmonic cycle incurs bifurcations similar to of the one in the 

ideal model with a slight difference in the value of the parameter g*. 

Therefore, the analysis results of the simplified ideal Colpitts oscillator are also qualitatively 

valid for the actual model. On the other hand, the validity of our model is limited by the 

operating frequency, because when this later increases, the model should take into account 

another parameters of the transistor (such as the capacitis Cbe, Cce which will be included in 

parallel with C1 and C2 respectively) in order to have more accurate results. 
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