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Abstract. Although the sequential optimization of production, storage, and distribution 
activities in the supply chain has been studied in depth to generate significant profits. 

The integrated optimization of the different functions in a coherent way is essential to 

make a difference in the current economic context, which is experiencing fierce 

competition in most industrial sectors. In this paper, our study is inspired and motivated 

by a pharmaceutical company that owns a manufacturing center with two production 

units. Each production unit specializing in the production of one type of product with 

different rates depends on its speed, and a fleet of homogeneous vehicles is used to 

deliver the warehouse (which is itself the distribution center) indirect shipment. We 

have to take into account certain characteristics, such as the capacity of the production 

units, multiple products, inventory levels, security stock, and delivery requirements 

including vehicle capacity and several vehicles available. Each vehicle can perform 
multiple trips. The aim is to minimize the total cost of production, inventory, and 

transport. We offer a full linear mixed program for multi-product lot-sizing problems 

with the multi-trip direct shipment. The computational experiment results are also 

presented and discussed through the different scenarios.  

 

Keywords. Integrated optimization, Lot sizing problem, Direct shipment, Multi-trip, 

Mixed integer programming. 

 

INTRODUCTION 

The customer-supplier connection has advanced in the current financial environment, defining 
the demand for product and service customization, reducing delivery delays, expanding 

delivery systems, and raising customer satisfaction rates. As a result, industrial companies are 
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49 seeking new ways to increase efficiency and better meet customer demands. To achieve these 

objectives, these companies will need to execute new planning across their supply chain 

network. 

Furthermore, changes in the supply chain might result in significant cost savings for a 
corporation. Companies commonly handle distinct activities based on their upstream 

operations in traditional supply chain systems. One of the most important optimization 

problems in supply chain management is an integrated optimization approach to logistic 

systems. A new trend in operations research is to combine and coordinate diverse planning 

problems to obtain better plans, balancing the benefits and drawbacks of a much larger set of 

options. 

In the integrated production and direct shipment distribution, the products are directly 

transported from the manufacturing plant to the customers. The production, setup, inventory, 

and direct shipment costs are minimized over the planning horizon. This problem typically 

incorporates various production aspects, e.g., production setup cost and/or setup time, and 
involves distribution decisions where the fixed and unit costs of delivery are customer-

specific (Adulyasak et al.,2014). 

In a distribution system, vehicles are not always employed since they are allowed to make 

many trips. It means that a single vehicle can directly deliver to a retailer multiple times in the 

same period to satisfy its demand, shown in figure (1. a), and can visit the first customer on 

the first trip then customer two on the second trip shown in figure(1. b), and so on. The aim is 

to minimize the utilization cost of vehicles. Under the title Vehicle Routing Problem with 

Multiple Use of Vehicles, Fleischmann (1990) published the first visible attempt to handle a 

vehicle routing problem with multiple journeys, in the framework of resolving a slew of 

distribution issues involving a heterogeneous fleet of vehicles and time windows. So is 

Cattaruzza et al. (2016) give a clear overview of the work devoted to this problem and 
highlight how the possibility to link up several trips for a vehicle affects solution methods.  

 

 

Fig.1. Represent the entire concept of transportation with the multi-trip direct shipment, (a) 

for a single customer; (b) for many MMMMMMM. 

Literature Review 

Various researchers studied this problem as Li et al. (2004) concentrated on the lot-sizing 

problem in which the provider can deliver by direct delivery using truckload (TL) or less-

than-truckload (LTL) transportation. In the first model, they recommended that production be 
limited to a multiple of constant batch size in each period as well as, backlogging is permitted 

and all cost factors are time variable. Then an algorithm is constructed to solve the second 

model, which contains a generic form of product acquisition cost structure, comprising a fixed 

charge for each acquisition, a variable unit manufacturing cost, and a freight cost with a 

(b) (a) 



 

 

50 truckload discount, using the findings produced for the first model. Van Norden and Vande 

Velde (2005) investigate a multi-product lot-sizing model based on a situation with a major 

European manufacturing corporation, in which any portion of a reserved transportation 

capacity can be employed at any time in exchange for a guaranteed price. If capacity is 
insufficient, the shipper must contract for extra transportation capacity on the spot market, 

where the price is greater. As a result, the freight prices in our model are linearly growing 

piece by piece, then a Lagrangean relaxation algorithm to compute lower and upper bounds 

was proposed. Rizk et al. (2006) used a Lagrangian relaxation technique to get lower and 

upper bounds by decomposing the integrated issue into uncapacitated lot-sizing and time-

independent subproblems, after that, a heuristic strategy based on sub-gradient optimization 

was given to handle a common problem in consumer products wholesaling and retailing. To 

overcome the problem of backlogging, Chand et al. (2007) devised a dynamic programming 

approach, in which, they looked at a dynamic lot-sizing problem that a producer faces when 

supplying a single product to multiple customers. Customers are differentiated by their 
backorder costs and shipping costs, with a customer with a high backorder cost having a 

greater need for the product than a customer with a low backorder cost. To help speed up the 

process with TL and LTL cost structures, Jaruphongsa et al. (2007) presented various 

dynamic programming techniques. Jaruphongsa and Lee (2008) investigated the problem of 

split delivery with time window constraints and solved it using dynamic programming 

methods. To solve the OWMR with a single product, Solyalı and Süral (2012) proposed a 

new powerful formulation based on a mixed transportation and route model, then They 

proved that for the joint replenishment problem, where the warehouse is a cross-docking 

facility, the new and transportation formulations are equal. Melo and Wolsey (2012) 

addressed many formulations for the two-level production–distribution problems with 

capacitated production and vehicles, as well as hybrid heuristics. In addition, A different 
approach for a problem in a similar context is described by Fleischmann, where, the multi-trip 

concept in vehicle routing problem (VRP) was introduced under the name Vehicle Routing 

Problem with Multiple Use of Vehicles, Fleischmann (1990). They develop mathematical 

models that seek to link the problem of production lot scheduling with outbound shipment 

decisions. The goal of the optimization is to reduce a manufacturer's overall relevant expenses 

by distributing a group of items to numerous retailers. For simplicity, the common cycle 

technique is used to address the economic lot-scheduling problem while making 

production/distribution decisions. Saglam and Banerjee (2018) create two separate shipping 

scenarios: periodic full truckload (TL) peddling shipments and less than truckload (LTL) 

direct shipping, which are both linked to and integrated with the multiproduct batching 
choices. Lmariouh et al. (2019) consider a Moroccan industrial application that includes the 

manufacture and distribution of bottled water. They consider the production process, delivery 

deadlines, numerous items, and inventory levels. The goal is to keep the total cost of 

manufacturing, shipping, and inventory as low as possible. For a variation of the multi-

vehicle, multi-product production routing issue, we suggest a mixed-integer linear program. 

Rakiz et al. (2021) combine several aspects related to (1) multi-level and multi-product 

production units, (2) multi-level and multi-product storage units, and (3) train transportation 

with time windows. The objective is to hierarchically satisfy deterministic demand units, and 

minimize total operational costs. On a large real data set gathered from our industry, we 

demonstrate the value of integrating decisions in terms of enhancing demand satisfaction 

rates, increasing resource efficiency, and lowering total operational costs by reducing the total 
number of switch-offs of productiontriall partners. We also investigate the cost structure and 

conduct a full cost sensitivity analysis. Finally, this work evaluates the upstream and 

downstream propagation of decisions in the logistics system and underlines the benefits in 

terms of flexibility offered by the global approach. 
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PROBLEM DESCRIPTION 

We begin by defining the problem in a general way. We define the model’s assumptions, and 

then we describe the relevant entities and the parameters that are associated with them. 
Following that, the constraints for capturing production, inventory, and transportation 

decisions, as well as the linking constraints for connecting these aspects of the problem, are 

presented: 

1. The following are the model's assumptions. 

2. Demands for products are given and deterministic. 

3. All demands must be satisfied.  

4. Manufactory can produce multi-product at various rates, according to the 

production speed. 

5. Production, storage, and vehicle capacity must not be exceeded. 

6. Direct shipment is used for delivery. 
7. Multi-trips are allowed.  

8. Fixed Utilization cost of vehicles per period.  

Our formulation includes the following indices, parameters, and decision variables:  

 

Indices 

𝑗 

𝑡 

𝑛 

𝑟 

𝑣 

𝑐 

𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡, 𝑗 = 1 … 𝑃 

𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 𝑝𝑒𝑟𝑖𝑜𝑑𝑠, 𝑡 = 1 … 𝑇 

𝐼𝑛𝑑𝑒𝑥  𝑜𝑓 𝑛𝑜𝑑𝑒𝑠, 𝑛 = 1 … 𝑁 

𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡𝑟𝑖𝑝𝑠, 𝑟 = 1 … 𝑅 

𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 𝑣𝑒ℎ𝑖𝑐𝑢𝑙𝑒𝑠, 𝑣 = 1 … 𝑉 

𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 𝑠𝑝𝑒𝑒𝑑𝑠, 𝑐 = 1 … 𝐾 

 

Parameters 

Production :  

𝐶𝑝𝑗,𝑡,𝑐 

𝐶𝑠𝑗,𝑐,𝑡 

𝐶𝑎𝑝𝑐,𝑡 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑗, 𝑎𝑡 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡 𝑤𝑖𝑡ℎ 𝑟𝑎𝑡𝑒 𝑐 

𝑆𝑒𝑡𝑢𝑝 𝑐𝑜𝑠𝑡 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑗 𝑤𝑖𝑡ℎ 𝑠𝑝𝑒𝑒𝑑 𝑐  𝑎𝑡 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡  
𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑤𝑖𝑡ℎ 𝑟𝑎𝑡𝑒 𝑐 𝑎𝑡  𝑝𝑒𝑟𝑖𝑜𝑑 𝑡  

Inventory:  

ℎ𝑖,𝑗,𝑡 

𝐶𝑎𝑝𝑆𝑡𝑖 

𝐷𝑒𝑚𝑗,𝑡 

𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑗 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑎𝑡𝑝𝑒𝑟𝑖𝑜𝑑 𝑡 
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 
𝐷𝑒𝑚𝑎𝑛𝑑 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑗 𝑒𝑡 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡 

Transport :  

𝐶𝑡 

𝐶𝑎𝑝𝐶 

𝐶𝑈𝑡 

𝐹𝑖𝑥𝑒𝑑 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡. 
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑢𝑙𝑒𝑠. 

𝐹𝑖𝑥𝑒𝑑 𝑢𝑡𝑖𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑣𝑒ℎ𝑖𝑐𝑢𝑙𝑒 𝑎𝑡𝑝𝑒𝑟𝑖𝑜𝑑 𝑡. 
 

Decision Variables  

Production :  

𝑥𝑗,𝑡,𝑐 

𝑦𝑗,𝑡,𝑐 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑗 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑎𝑡 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡 𝑤𝑖𝑡ℎ 𝑟𝑎𝑡𝑒 𝑐. 

𝐸𝑞𝑢𝑎𝑙 𝑡𝑜 1 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑗 𝑎𝑡 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡 𝑤𝑖𝑡ℎ 𝑟𝑎𝑡𝑒 𝑐, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

Inventory :  
𝐼𝑖,𝑗,𝑡 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑗 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑎𝑡 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡. 

Transport :  

𝑣𝑡,𝑟 

𝑞𝑗,𝑡,𝑟 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑢𝑙𝑒 𝑠𝑒𝑛𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑤𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 𝑖𝑛 𝑡𝑟𝑖𝑝 𝑟 𝑎𝑡 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡. 
𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑗 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑡𝑜𝑡ℎ𝑒 𝑤𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 𝑖𝑛 𝑡𝑟𝑖𝑝 𝑟 𝑎𝑡 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡. 



 

 

52 𝐻𝑡 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑢𝑙𝑒 𝑢𝑠𝑒𝑑 𝑎𝑡 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡. 
 

Mathematical Formulation  

Objective function: 

𝑚𝑖𝑛 ∑ ∑ ∑ 𝑥𝑗,𝑡,𝑐 ∗ 𝐶𝑝𝑗,𝑡,𝑐

𝑐𝜖𝐶𝑗𝜖𝑃𝑡𝜖𝑇

+ ∑ ∑ ∑ 𝑦𝑗,𝑡,𝑐 ∗ 𝐶𝑠𝑗,𝑡,𝑐

𝑐𝜖𝐶𝑗𝜖𝑃𝑡𝜖𝑇

+ ∑ ∑ ∑ 𝐼𝑖,𝑗,𝑡 ∗ ℎ𝑖,𝑗,𝑡

𝑡𝜖𝑇𝑗𝜖𝑃𝑖𝜖𝑁

+ ∑ ∑ 𝑣𝑡,𝑟 ∗ 𝐶𝑡

𝑡𝜖𝑇𝑟𝜖𝑅

+ ∑ 𝐶𝑈𝑡 ∗ 𝐻𝑡

𝑡𝜖𝑇

 
(1) 

Constraints: 

𝐼1,𝑗,𝑡 = 𝐼1,𝑗,𝑡−1 + ∑ 𝑥𝑗,𝑡,𝑐

𝑐𝜖𝐶

− ∑ 𝑞𝑗,𝑡,𝑟

𝑟𝜖𝑅

 ∀ 𝑗𝜖𝑃  , 𝑡𝜖𝑇 − {1} (2) 

𝐼𝑖,𝑗,𝑡 =  𝐼𝑖,𝑗,𝑡−1 + ∑ 𝑞𝑗,𝑡,𝑟

𝑟𝜖𝑅

− 𝐷𝑒𝑚𝑗,𝑡 ∀ 𝑗𝜖𝑃  , 𝑡𝜖𝑇 − {1} (3) 

∑ 𝐼𝑖,𝑗,𝑡

𝑗𝜖𝑃

≤ 𝐶𝑎𝑝𝑆𝑡𝑖  ∀ 𝑖𝜖𝑁  , 𝑡𝜖𝑇 (4) 

∑ 𝑥𝑗,𝑡,𝑐

𝑗𝜖𝑃

≤  𝐶𝑎𝑝𝑐,𝑡 ∀𝑐𝜖𝐾  , 𝑡𝜖𝑇 (5) 

𝑥𝑗,𝑡,𝑐 ≤ 𝑦𝑗,𝑡,𝑐 ∗ ∑ 𝐷𝑒𝑚𝑗,𝑡1

𝑡1∈𝑇

 ∀𝑗𝜖𝑃, 𝑐𝜖𝐾 , 𝑡𝜖𝑇 (6) 

∑ 𝑦𝑗,𝑡,𝑐

𝑐𝜖𝐶

≤ 1 ∀𝑗𝜖𝑃  , 𝑡𝜖𝑇 (7) 

∑ 𝑞𝑗,𝑡,𝑟

𝑗𝜖𝑃

≤ 𝐶𝑎𝑝𝐶 ∗ 𝑣𝑡,𝑟 ∀ 𝑟𝜖𝑅 , 𝑡𝜖𝑇 (8) 

𝑣𝑡,𝑟 ≤ 𝑉 ∀ 𝑟𝜖𝑅 , 𝑡𝜖𝑇 (9) 

𝑣𝑡,𝑟 ≤ 𝐻𝑡 ∀ 𝑟𝜖𝑅 , 𝑡𝜖𝑇 (10) 

𝑦𝑗,𝑚,𝑡,𝑐 ∈ {0,1}  , 𝐼𝑖,𝑗,𝑡, 𝑥𝑗,𝑚,𝑡,𝑐 , 𝑞𝑗,𝑡,𝑟 ,𝑣𝑡,𝑟 , 𝐻𝑡 ≥ 0 (11) 

 

Objective function (1) minimize the production cost, setup cost, holding cost at supplier and 

retailer, as well as the transportation cost. The inventory balance at the manufacturing and the 
consumers are ensured by constraints (2) and(3). Constraint (4) shows that the inventory 

capacity is respected. Constraint (5) models the production capacity. Constraint (6) connects 

production and transportation choices to guarantee that the amounts produced of each product 
satisfy the deliveries made in each period for every retail location. Constraint (7)  indicates 

that only one speed must be used for production. Constraint ensures that the vehicle capacity 

is not exceeded. Constraint (9) indicates that the number of vehicles used for each trip at each 

period must respect the number of vehicles available. Constraint (10) defines the number of 

vehicles used in each period. 

 

Case Study 

This part details the case study of an Algerian pharmaceutical company that owns a 

processing center where several products are processed and delivered to the warehouse. This 

last is itself the distribution center that delivers goods to customers. It receives client requests 

and sends the overall consumer request information to the production center. The production 

center has two production units, each one produces one type of product at two different rates 

depending on the speed of the unit (depending on the speed of machines or lines in it). The 
manufacturing plant considers a setup cost while starting production in each unit. It has two 



 

 

53 homogeneous vehicles. Processed products may be directly charged into vehicles to be 

delivered or they can be stored at the production plant store to be delivered in a later period. 

The quantity held at the plant and warehouse must not exceed each location's stock capacity. 

A simplified manner of the problem is depicted in figure 2. 
Some additional considered constraints must be taken into account to apply the suggested 

approach to the case study. We add 𝑚: 𝑖𝑛𝑑𝑒𝑥𝑜𝑓𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑢𝑛𝑖𝑡𝑠, 𝑚 = 1 … 𝑀, then we 

change 𝐶𝑎𝑝𝑐,𝑡,𝐶𝑠𝑗,𝑐,𝑡, 𝑥𝑗,𝑡,𝑐 and 𝑦𝑗,𝑡,𝑐 by 𝐶𝑎𝑝𝑚,𝑐,𝑡,𝐶𝑠𝑗,𝑚,𝑐,𝑡, 𝑥𝑗,𝑚,𝑡,𝑐  and 𝑦𝑗,𝑚,𝑡,𝑐 which represent: 

production capacity for each production unit 𝑚 with rate 𝑐 at period 𝑡, setup cost of product 

𝑗in unit 𝑚with rate 𝑐 at period 𝑡, production quantity of product 𝑗 in production unit 𝑚 with 

rate 𝑐 at period 𝑡 and a binary variable equal to 1 if unit 𝑚 set up to produce product 𝑗 with 

rate 𝑐 at period 𝑡, respectively. Concerning constraints, after changing objective function and 

constraints(2),(5),(6) and (7), we obtained : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. Representation of a simplified overview of the problem. 

 

𝑚𝑖𝑛 ∑ ∑ ∑ ∑ 𝑥𝑗,𝑚,𝑡,𝑐 ∗ 𝐶𝑝𝑗,𝑚,𝑡,𝑐

𝑚𝜖𝑀𝑐𝜖𝐶𝑗𝜖𝑃𝑡𝜖𝑇

+ ∑ ∑ ∑ ∑ 𝑦𝑗,𝑡,𝑐 ∗ 𝐶𝑠𝑗,𝑡,𝑐

𝑚𝜖𝑀𝑐𝜖𝐶𝑗𝜖𝑃𝑡𝜖𝑇

+ ∑ ∑ ∑ 𝐼𝑖,𝑗,𝑡 ∗ ℎ𝑖,𝑗,𝑡

𝑡𝜖𝑇𝑗𝜖𝑃𝑖𝜖𝑁

+ ∑ ∑ 𝑣𝑡,𝑟 ∗ 𝐶𝑡

𝑡𝜖𝑇𝑟𝜖𝑅

+ ∑ 𝐶𝑈𝑡 ∗ 𝐻𝑡

𝑡𝜖𝑇

 
(12) 

   

𝐼1,𝑗,𝑡 = 𝐼1,𝑗,𝑡−1 + ∑ ∑ 𝑥𝑗,𝑚,𝑡,𝑐

𝑐𝜖𝐶𝑚𝜖𝑀

− ∑ 𝑞𝑗,𝑡,𝑟

𝑟𝜖𝑅

 ∀ 𝑗𝜖𝑃  , ∀ 𝑡𝜖𝑇 − {1} (13) 

∑ 𝑥𝑗,𝑚,𝑡,𝑐

𝑗𝜖𝑃

≤  𝐶𝑎𝑝𝑚,𝑡,𝑐 ∀𝑐𝜖𝐾 , 𝑚𝜖𝑀  , 𝑡𝜖𝑇 (14) 

𝑥𝑗,𝑚,𝑡,𝑐 ≤ 𝑦𝑗,𝑚,𝑡,𝑐 ∗ ∑ 𝐷𝑒𝑚𝑗,𝑡1

𝑡1∈𝑇

 ∀𝑗𝜖𝑃, 𝑐𝜖𝐾, 𝑚𝜖𝑀  , 𝑡𝜖𝑇 (15) 

∑ 𝑦𝑗,𝑚,𝑡,𝑐

𝑐𝜖𝐶

≤ 1 ∀𝑗𝜖𝑃 , 𝑚𝜖𝑀 , 
 𝑡𝜖𝑇 

(16) 

𝑥1,2,𝑡,𝑐 = 0 
∀𝑐𝜖𝐾, 
 𝑡𝜖𝑇 

(17) 

𝑥2,1,𝑡,𝑐 = 0 
∀𝑐𝜖𝐾, 
 𝑡𝜖𝑇 

(18) 

 



 

 

54 Constraints (17) and (18) are imposed to specialize production of processing units. Mean 

that production unit one produces only type number one, and production unit two produces 

only type number two. 

 

EXPERIMENTATIONS 

In this part, to illustrate the efficacy of our formulation, we show the experimental part of our 

study. We provide different trails by way of two scenarios. The solver CPLEX is used to 

solve our mathematical formulation. 

Common data are:  

1. The company serves only the warehouse, so we consider it as one client. 

2. The company owns two homogenous vehicles with a capacity of 500 products. 

3. The company owns a store with a capacity of 500 products. 
4. The company owns two production units, each one having two speeds. 

5. Each production unit produces: 800 products with speed 1 “medium” (𝑐 = 1) and 

1000 products with speed 2 ”high” (𝑐 = 2) in all the periods. 

6. Vehicles can have up to two trips per period. 

7. Fixed utilization cost of a vehicle is 100 in all the period. 
8. Fixed transportation cost from the factory to the warehouse is 250. 

9. The warehouse has a store with a capacity of 200 products. 

10. No initial inventories at the plant and customers (equal to zero). 

 

Table 1 shows the data for the second scenario, which includes the identical information as 

the first but for the demand numbers; we set the first period's amount to below and the second 

period's amount to be high, and so on. The cost of inventory is higher than the cost of 

production and setup.   

 

Table 1. Data of the second scenario (Scenario 02) 

 

RESULTS 

Period 1 2 3 4 

Demand 𝒋 = 𝟏 100 800 50 700 

𝒋 = 𝟐 200 1000 100 600 

𝑪𝒑𝒋,𝒕,𝒄 𝒄 = 𝟏 𝒋 = 𝟏 4 4 4 4 

𝒋 = 𝟐 8 8 8 8 

𝒄 = 𝟐 𝒋 = 𝟏 9 9 9 9 

𝒋 = 𝟐 11 11 11 11 

𝑪𝒔𝒋,𝒎,𝒄,𝒕 

 

𝒎 = 𝟏 𝒄 = 𝟏 𝒋 = 𝟏 8 15 10 7 

𝒋 = 𝟐 / / / / 

𝒄 = 𝟐 𝒋 = 𝟏 10 20 15 10 

𝒋 = 𝟐 / / / / 

𝒎 = 𝟐 𝒄 = 𝟏 𝒋 = 𝟏 / / / / 

𝒋 = 𝟐 10 18 15 10 

𝒄 = 𝟐 𝒋 = 𝟏 / / / / 

𝒋 = 𝟐 20 30 25 20 

𝒉𝒊,𝒋,𝒕 𝒊 = 𝟏 
𝑝𝑙𝑎𝑛𝑡 

𝒋 = 𝟏 20 20 20 20 

𝒋 = 𝟐 30 30 30 30 

 

𝒊 = 𝟐 
𝑤𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒 

𝒋 = 𝟏 20 20 20 20 

𝒋 = 𝟐 30 30 30 30 



 

 

55 The results of the generated scenarios are reported in this part. The models are implemented 

in the CPLEX solver to get the results. Tables 3 and 4 detail these findings. Each table 

represents a single scenario, with the objective function value listed with the amount 

produced, delivered, and stored, as the number of vehicles utilized in each trip to the 
warehouse during each period. 

 

DISCUSSION 

The results of both scenario experiments are explained in this section. 

 

Table 2. Results of the first scenaio (Scenario 01) 

Objective 

function 

40605 

Costs Production Setup Inventory Transport Utilization 

37350 155 0 2500 600 

Period 1 2 3 4 

𝒙𝒋,𝒎,𝒕,𝒄 𝒋 = 𝟏 Speed used 𝑐 = 1 𝑐 = 1 𝑐 = 1 𝑐 = 1 

Quantity 0 600 500 750 

𝒋 = 𝟐 Speed used 𝑐 = 2 𝑐 = 2 𝑐 = 1 𝑐 = 1 

Quantity 1000 850 500 700 

𝒒𝒋,𝒕,𝒓 

 

𝒋 = 𝟏 Trip / 1 2 2 1 2 

Quantity 0 150 450 500 250 500 

𝒋 = 𝟐 Trip 1 2 1 1 1 

Quantity 500 500 850 500 700 

𝑰𝒊,𝒋,𝒕 0 0 0 0 

𝑯𝒕 1 2 1 1 

𝒗𝒕,𝒓 Trip 1 2 1 2 1 2 1 2 

Number of 

vehicles used 

1 1 2 1 1 1 2 1 

 

In scenario 1, the results presented in table 2 show that due to high demand for product type 

two in period 1, production of this type occurred at the second speed even though the cost of 

producing with the second speed was higher than the cost of producing with the first speed; so 

we must produce at that speed to meet the client's demand. In addition, due to the vehicle's 

capacity of half that amount, the delivery quantity was split into two trips. We justify our 
decision to utilize one car for two trips since it costs 100 less than using two vehicles for one 

trip, which costs 200. For period 2, demands were met by producing the same quantity 

requested. When we observe that inventory holding cost is almost negligible and there is no 

production in the first period for product type one, so we ask why we did not produce 600 

products in the first period then be stored for the next period? On the other hand, delivered it 

then stored in the warehouse? The answer is if we produce 600 products in the first period 

then we stored we get as a minimum cost: 600*0.025+10 = 25 (inventory and setup costs), 

which is higher than 20 (setup cost for first speed). Furthermore, we are unable to make 

Product type 2 at the first speed since it only offers 800 products, while we require 850. 

Moreover, the delivery amount is 1450, and when we divide it by 500, we get three, that's 

why we sent two vehicles to the warehouse on the first trip and one vehicle on the second. For 
the following 2 periods, we have just produced what is needed for this period, then delivered 

in two trips. 

 

Table 3. Results of te second scenario (Scenario 02) 

Objective 27755 



 

 

56 function 

Costs Production Setup Inventory Transport Utilization 
24800 105 0 2250 600 

Period 1 2 3 4 

𝒙𝒋,𝒎,𝒕,𝒄 𝒋 = 𝟏 Speed used 1 1 1 1 

Quantity 100 800 50 700 

𝒋 = 𝟐 Speed used 1 2 1 1 

Quantity 200 1000 100 600 

𝒒𝒋,𝒕,𝒓 

 

𝒋 = 𝟏 Trip 1 2 1 1 2 

Quantity 100 800 50 233 467 
𝒋 = 𝟐 Trip 1 1 2 1 1 2 

Quantity 200 800 200 100 567 33 

𝑰𝒊,𝒋,𝒕 0 0 0 0 

𝑯𝒕 1 2 1 2 

𝒗𝒕,𝒓 Trip 1 1 2 1 1 2 

Number of 

vehicles used 

1 2 2 1 2 1 

 
In scenario 2, the results presented in table 3 show that there is no storage in all periods, 

despite low demand in the first and third periods, due to the high value of inventory holding 

costs in both plant and warehouse. We have low demand in the first and third periods, which 

can be met by producing at first speed (offering 800 goods) and then delivering by a single 

vehicle on a single trip because the amount is less than the vehicle's capacity. In terms of the 

second period, we can create the first type at the first speed, but the second type must be 

produced at the second speed; to meet customer requirements, two vehicles must be sent on 

the first and second trips (1800/500 4). For the last period, it is necessary to make both types 

with the first speed then delivered by two vehicles on the first trip and one on the second trip.   

 

CONCLUSION 

In this paper, a large Multi-product Lot-sizing Problem with Multi-trip direct shipment is 

addressed which serves to optimize in the same time production, inventory, and transportation 

decisions. We propose a novel mathematical formulation that allows us to manufacture at 

various rates, which implies that production is flexible, especially when demand is high. On 

the other side, we include the multi-trip idea in the direct shipment. It enables the company to 

meet clients' demands with several trips even if it has only one vehicle, avoiding missed sales 

and late penalties, as well as reducing vehicle utilization costs. We believe that in the case of a 

single-vehicle when multiple trips are allowed, deserves to be part of this study.  

In addition, we presented a case study of an Algerian pharmaceutical company, in which we 

applied our approach. 
Our results show that adding the concept of speeds and multi-trip is more beneficial to any 

company compared to the other approaches. 

Finally, many factors are still not taken into account in our method, resulting in new future 

research such as: 

1. The energy consumption by the production system especially for the high speed, we want 

to satisfy demands but without forgetting the energy aspect.  

2. The time aspect such as production time, setup time, and transportation time. To be real, 

we need to consider time windows and maximum trips allowed in each period 

3. Developing a heuristic or a meta-heuristic that can deal with the big instances because 

solvers can give an exact solution for small and medium instances. 
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