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Abstract.Liver disease poses a significant global health burden, with high mortality
rates exacerbated by challenges in early detection. Machine learning (ML) offers
promising avenues for developing automated diagnostic tools to address this critical
need. While various ML classifiers have been explored for liver disease prediction, a
comprehensive, systematic comparison of a wide range of modern algorithms,
incorporating robust pre-processing, handling of class imbalance, hyper parameter
tuning with cross-validation, and analysis of computational efficiency, is essential to
guide the selection of models for practical application. This study systematically
evaluates thirteen diverse ML classification algorithms using the Liver Patient Dataset
(LDPD). The methodology includes data pre-processing with imputation, encoding, and
standardization within a pipeline to prevent data leakage, handling class imbalance
using SMOTE, splitting data into training and testing sets, and employing
RandomizedSearchCV with Stratified K-Fold cross-validation for hyper parameter
optimization. Performance was assessed using key metrics including Accuracy,
Precision, Recall, Specificity, F1-Score, and ROC AUC on an independent test set,
alongside training time. Results demonstrate that ensemble and advanced tree-based
methods achieve superior predictive performance. Hyper parametertuning further
optimized performance, with Tuned Random Forest achieving the highest ROC AUC
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(0.9995) and Specificity (0.9973), and Tuned LightGBM achieving the highest Recall
(0.9996). The study highlights a crucial trade-off: while tuning yields peak
performance, default configurations of efficient models like LightGBM and XGBoost
offer exceptionally high performance (ROC AUC > 0.9993) combined with
significantly faster training times (< 0.41 seconds), providing a favorable balance for
practical application. This research identifies highly effective and efficient ML models
for liver disease prediction, contributing empirical evidence to support the development

of automated diagnostic aids.

Keywords.Liver Disease Prediction, Machine Learning Classification,Class Imbalance,
Hyperparameter Tuning, Ensemble Methods.

INTRODUCTION

Liver disease represents a significant global health challenge, contributing to substantial
morbidity and mortality worldwide. As highlighted by recent data, the burden of liver disease
is particularly acute in regions like India, where 264,193 deaths were reported in 2018,
corresponding to an age-adjusted death rate of approximately 23.00 per 100,000 population
[World Life Expectancy, 2022]. The liver, a vital organ responsible for detoxification and
numerous metabolic functions, is susceptible to damage from various etiologies, including
viral infections, metabolic disorders, excessive alcohol consumption, and genetic factors
[SindhujaandPriyadarsini, 2016;Md et al., 2023]. While conditions like cirrhosis and liver
failure represent advanced stages, early detection of liver damage is often challenging due to
its insidious progression and non-specific initial symptoms [Md et al., 2023]. This delayed
identification can severely limit therapeutic options and negatively impact patient outcomes,
underscoring the critical need for timely and accurate diagnostic tools to facilitate early
intervention and improve prognosis [Shaheamlung, KaurandKaur, 2020].

The growing availability of health data and advancements in computational capabilities have
positioned machine learning (ML) as a powerful paradigm for enhancing medical diagnosis
and prognosis [Md et al., 2023]. Classification techniques, in particular, have shown promise
in developing automated tools for identifying various diseases based on patient data. In the
context of liver disease, ML algorithms have been explored for tasks such as classifying liver
fibrosis stages, predicting patient survival, and distinguishing between different liver
conditions [Md et al., 2023]. However, the landscape of ML applications in liver disease
prediction is continuously evolving. While numerous studies have investigated various
algorithms, there remains a need for comprehensive, head-to-head comparisons of a wide
array of modern and diverse ML classifiers on relevant datasets. Furthermore, the impact of
critical steps like systematic data preprocessing, effective handling of class imbalance, and
rigorous hyperparameter tuning on the performance of these models for liver disease
prediction warrants further investigation to identify the most robust and reliable approaches
for potential clinical application.

This study aims to address these gaps by conducting a systematic and comprehensive
evaluation of multiple machine learning classification algorithms for liver disease prediction
using a publicly available dataset. The primary objectives are: (1) to benchmark the
performance of a diverse set of ML classifiers; (2) to identify the most effective and efficient
models for this prediction task based on a thorough analysis of various performance metrics,
including those crucial in medical diagnosis such as Recall and Specificity, alongside overall
discrimination ability (ROC AUC) and computational efficiency (training time). The rationale
behind this research is to provide a data-driven comparison to guide the selection of suitable
ML models for developing automated liver disease screening or diagnostic support tools. This
work contributes to the field by offering a detailed comparative analysis of numerous
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algorithms, demonstrating the practical impact of different techniques, and highlighting the
trade-offs between model performance and efficiency in the context of liver disease prediction.
The implemented methodology involves standard data preprocessing techniques, addressing
class imbalance using SMOTE, splitting the data into training and testing sets, training and
evaluating a broad range of classifiers, and conducting a staged performance comparison
analysis of both models.

The remainder of this paper is organized as follows: Section 2 presents a review of the
existing literature on machine learning applications in liver disease classification and
detection. Section 3 provides a detailed explanation of the dataset, the proposed architecture,
the algorithms utilized, and the preprocessing steps. Section 4 describes the experimental
setup and presents the evaluation results. Section 5 discusses the conclusion and outlines
potential directions for future work.

LITERATURE REVIEW

This section reviews existing research on applying machine learning classification techniques
for liver disease prediction and diagnosis, focusing on commonly used algorithms, datasets,
and key findings to establish the context for this study.

Machine learning models such as Support Vector Machines (SVM), Logistic Regression,
Naive Bayes, Decision Trees (DT), Random Forest, K-Nearest Neighbors (KNN), and
Atrtificial Neural Networks (ANN), along with various boosting algorithms, have been widely
applied to classify liver diseases [Ramana et al., 2011]. Comparative studies on datasets like
the Andhra Pradesh (AP), UCLA, UCI, and Indian Liver Patient Dataset (ILPD) show varied
results regarding the best-performing algorithms. Some studies found KNN, backward
propagation (a type of ANN), and SVM to be effective [Ramana et al.,2011], while others
highlighted Decision Trees [Kumar andSahoo, 2013;Ayeldeen et al., 2015], C4.5 [Hashem et
al., 2018, 1Durai et al., 2019], ANN [Sivakumar et al., 2019], or Bayesian networks [Jacob et
al., 2018] as top performers in specific comparisons or on particular datasets. The influence of
the dataset itself on model performance has also been noted [Ramana et al., 2011

Ramana et al., 2012].

Researchers have also explored specific techniques and algorithms. Studies have compared
models like SVM and backpropagation [Ma et al., 2018], focused on predicting specific
conditions like fibrosis [Ayeldeen et al., 2015; Sontakke et al., 2017] or fatty liver disease
[Jacob et al., 2018], and investigated the utility of risk factors [Wu et al., 2019]. Techniques
such as feature selection [Ramana et al., 2012 ;Gogi, 2018 ; GeethaandArunachalam, 2021

], and data normalization [Gogi, 2018] have been incorporated to improve model performance.
While some work has focused on single algorithms with preprocessing and tuning
[GeethaandArunachalam, 2021], the diverse findings across studies using different
methodologies and datasets underscore the complexity of the problem and the lack of a
universally agreed-upon optimal approach.

Despite the extensive research, a key gap in the literature is the need for comprehensive,
systematic comparisons of a wide range of modern machine learning classifiers evaluated
under a consistent and rigorous methodology. Many studies focus on a limited set of
algorithms or lack detailed consideration of crucial steps like robust preprocessing, handling
class imbalance (although SMOTE is used in some implementations, its systematic evaluation
across models is needed), and the impact on a broad scale. Furthermore, a thorough analysis
that considers not only predictive performance metrics but also practical factors like
computational efficiency (training time) is often missing but essential for real-world
application.

This study aims to address these gaps by providing a comprehensive and systematic
evaluation of a wide array of machine learning classifiers. By employing a consistent
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., methodology, including robust preprocessing pipelines and SMOTE for imbalance handling,
and evaluating models across a standard set of performance metrics including training time,
this research offers a valuable comparative analysis to identify effective and efficient models
for liver disease prediction, contributing empirical evidence to the field. Furthermore, the
analysis will explicitly consider the computational efficiency (training time) alongside
predictive performance metrics, providing valuable insights for the practical application of
these models in liver disease prediction.

RESEARCH METHODOLOGY

This study adopted a systematic machine learning workflow to develop and evaluate
predictive models for the classification of liver disease. The comprehensive methodology
encompasses data acquisition, rigorous preprocessing, strategies for handling class imbalance,
model training, hyperparameter tuning, and a comprehensive performance evaluation process.
The specific steps are elaborated in the following subsections.

Data Acquisition and Initial Inspection

The initial phase involved the acquisition of the dataset, identified as the Liver Patient Dataset
(LDPD), which contains patient-specific information and related medical parameters relevant
to liver disease diagnosis. The fundamental characteristics of the dataset, including its
demographic scope, total number of records, and distribution across liver patient and non-
liver patient categories, as well as gender distribution, are summarized in Table 1. The dataset
comprises ten predictor variables and one target variable. The predictor variables encompass
demographic information (age, gender) and various biochemical markers related to liver
function (Total Bilirubin, Direct Bilirubin, Alkaline Phosphatase, Alamine Aminotransferase
(SGPT), Aspartate Aminotransferase (SGOT), Total Proteins, Albumin, and Albumin-to-
Globulin Ratio). The target variable indicates the diagnosis as either 'Liver Patient' or "Non
Liver Patient', expert-labeled to facilitate supervised learning. Detailed information regarding
each attribute, including measurement units, value ranges, means, and standard deviations, is
provided in Table 2.

Tablel.LDPD Dataset Description.

Demography Total records Liver patients Not liver patients Male Female
Worllo‘l‘t‘;éfl‘:sﬁver 30691 21917 8774 21986 7803
Table2. Attributes’ Information of Dataset.

Attribute Measurement unit Value range Mean Std

Age (AG) Years 4-90 44.107 15.981
Gender (GN) Categorical Oorl 0.775  0.483
Total bilirubin (TB) mg/dl 0.4-75 3.370  6.256
Direct bilirubin (DB) mg/dl 0.1-19.7 1.528  2.870
Alkaline phosphatase (AP) U/L 63-2110 289.075 238.538
Alanine aminotransferase (ALA) U/L 102000  81.489 182.159
Aspartate aminotransferase (ASA) U/L 104929  111.470 280.851

Total proteins (TP) g/dl 2.7-9.6 6.480  1.082



o Albumin (AL) g/dl 0.9-5.5 3.130  0.792
Albumin and globulin ratio (AGR) g/dl 0.3-2.8 0.943  0.323
Liver disease or not (LD or NLD) Categorical Oorl 0.286  0.452

Upon loading the data into a structured format, a preliminary inspection was conducted to
ascertain the dataset's overall structure and identify variable types (numerical and categorical).
Basic descriptive statistics were reviewed to understand the distribution and central
tendencies of the attributes. To gain deeper insights into data distribution patterns and the
relationships between variables, particularly concerning the target variable, visual exploratory
data analysis (EDA) techniques were employed, including the generation of histograms for
individual attributes and pair plots to visualize attribute distributions and their relationships
with the liver disease outcome. A critical assessment was also performed to identify the
presence and extent of missing values across different features, which is a necessary precursor
to data cleaning. Ensuring data quality by addressing such redundancies and inconsistencies,
including the identification and potential handling of duplicate instances, is essential for
improving the efficiency and reliability of subsequent modeling. Initial steps also involved
recognizing the need to convert the categorical 'Gender' feature into a numerical format
suitable for machine learning algorithms, which was performed through data encoding in a
subsequent preprocessing step.

Data Preprocessing

Data preprocessing constituted a crucial stage focused on transforming the raw data into a
clean, consistent, and numerically compatible format for machine learning, while strictly
adhering to principles that prevent data leakage. This stage involved several key procedures.
Missing values, identified during the initial inspection (the counts of which are detailed in
Table 3), were handled through Imputation. Specifically, a Median Imputation strategy was
applied to numerical features, replacing missing entries with the median value calculated
solely from the training data subset to avoid test set influence. For the categorical 'Gender'
feature, Mode Imputation was utilized to fill missing values with the most frequent category
observed in the training subset. Categorical features, such as 'Gender', were converted into a
numerical representation through One-Hot Encoding, creating binary indicator variables to
ensure no ordinal relationship was incorrectly imposed. Furthermore, numerical features,
which often exhibit widely varying scales, were subjected to Standardization (Z-score scaling).
This technique transforms features to have a mean of zero and a standard deviation of one,
standardizing their range. The Z-score method was also employed to address the presence of
significant outliers observed in certain attributes, effectively neutralizing their
disproportionate impact. Feature Scaling is a fundamental step for algorithms sensitive to
feature magnitudes, ensuring that no single feature dominates the learning process, regardless
of its original unit or range.

All these preprocessing steps—imputation, encoding, and scaling—were encapsulated within
a Pre-processing Pipeline using scikit-learn's Pipeline and ColumnTransformer classes. This
theoretical framework guarantees that all fitting of preprocessing parameters occurs
exclusively on the training data, and these learned parameters are then applied consistently to
transform both the training and independent test sets, rigorously preventing data leakage.

Table3. No of Missing Values in the Dataset.
AG GN TB DB AP ALA ASA TP AL AGR




AG GN TB DB AP ALA ASA TP AL AGR
278 0 648 561 796 739 859 463 494 559

Handling Class Imbalance

The dataset utilized in this study exhibited a notable imbalance in the distribution of the target
variable, with a higher prevalence of the positive class (Liver Patient). Addressing this
inherent class imbalance was a critical step to mitigate potential model bias towards the
majority class. This was achieved through Oversampling of the minority class. Specifically,
the Synthetic Minority Over-sampling Technique (SMOTE) was applied to the pre-processed
training data. SMOTE is a synthetic oversampling algorithm that generates artificial instances
of the minority class by interpolating between existing minority samples and their k-nearest
neighbours in the feature space. This process, applied only to the pre-processed training data,
resulted in a training dataset with a more balanced class distribution, thereby enabling the
subsequent models to learn the characteristics of the minority class more effectively. The
independent test set was kept in its original class distribution to ensure performance
evaluation reflected real-world scenarios.

Model Training and Evaluation

To establish a baseline performance and identify algorithms with high potential, a diverse
suite of thirteen machine learning classification models was initially selected and trained
using their default hyperparameters. These models were chosen to represent a broad spectrum
of theoretical approaches to classification, encompassing Generalized Linear Modeling
(Logistic Regression), Instance-Based Learning (K-Nearest Neighbors), Decision Tree
Learning, various Ensemble Methods based on Bagging (Random Forest, Extra Trees) and
Boosting (Gradient Boosting Machines, XGBoost, LightGBM, AdaBoost, CatBoost), a
Kernel Method (Support Vector Machine with an RBF kernel), a Probabilistic Model
(Gaussian Naive Bayes), and an Artificial Neural Network (Multi-Layer Perceptron). Each
selected model underwent Model Training by being fitted to the SMOTE-resampled and
preprocessed training data. The diversity in algorithm selection was intentional, designed to
enrich the comparative study by evaluating models with distinct underlying mechanisms and
potential strengths in capturing different patterns within the data. Following training, each
model's performance was evaluated on the independent preprocessed test dataset.

Hyperparameter Tuning

Following the initial evaluation of models with default parameters, hyperparameter tuning
was performed on a subset of the most promising models to further optimize their
performance. This process utilized RandomizedSearchCV, a robust technique for efficiently
searching a predefined hyperparameter space. To ensure a reliable estimate of performance
during tuning and mitigate the risk of overfitting to a single validation set, Stratified K-Fold
cross-validation was employed with 5 splits (k=5). Stratification ensured that each fold
maintained a representative distribution of the target classes. The optimization criterion for
RandomizedSearchCV was the ROC AUC score, which is a suitable metric for evaluating
classifier performance on imbalanced datasets by assessing the model's ability to discriminate
between positive and negative classes across various thresholds. The tuning process involved
fitting the models with various combinations of hyperparameters sampled from specified
distributions and evaluating them using cross-validation on the resampled training data. The
best set of hyperparameters for each model was selected based on the highest mean cross-
validation ROC AUC score.
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; EXPERIMENTAL RESULTS AND PERFORMANCE EVALUATION

The experimental evaluation was conducted on a ThinkPad L390 laptop equipped with an
Intel(R) Core(TM) 15-8265U CPU @ 1.60GHz 1.80 GHz, 24.0 GB RAM, and a 256GB SSD,
running the Windows 10 Pro 64-bit operating system. The implementation, coding, and
visualization were performed using Python within a Jupyter Notebook environment.

Performance Evaluation Metrics

The performance of the developed prediction models was assessed using a rigorous
experimental protocol. The dataset was initially divided into an 80% training set and a 20%
testing set using stratified random sampling to ensure that the proportion of target classes was
maintained in both subsets. The confusion matrix served as the fundamental basis for
performance evaluation, providing a detailed breakdown of classification outcomes: True
Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN). The
confusion matrix components for all evaluated default algorithms are presented in Table 4.
Model performance was quantified using a suite of widely accepted evaluation metrics
derived from the confusion matrix. These included Accuracy, Precision, Recall (Sensitivity),
F1-Score, Specificity, and the Area Under the Receiver Operating Characteristic curve (ROC
AUC). Table 5 shows the calculation of each evaluationmetric. In the context of medical
diagnosis, the following metrics are particularly important:

- Recall (Sensitivity): The proportion of actual positive cases (Liver Patients) that
were correctly identified. High Recall is crucial for minimizing false negatives,
which is paramount in medical diagnosis to avoid missing true cases.

- Specificity: The proportion of actual negative cases (Non Liver Patients) that were
correctly identified. High Specificity is important for minimizing false positives,
preventing healthy individuals from being incorrectly diagnosed.

- FI-Score: The harmonic mean of Precision and Recall, providing a balanced
measure particularly useful for imbalanced datasets.

- ROC AUC: An aggregate measure of the model's ability to discriminate between
positive and negative classes across all possible classification thresholds. A higher
AUC indicates superior discriminatory power, representing the trade-off between
True Positive Rate and False Positive Rate.

- Accuracy: The overall proportion of correctly classified instances. While a general
indicator, it is not the primary comparison metric due to the potential for misleading
results in the presence of class imbalance.

- Precision: The proportion of instances predicted as positive that were actually
positive.

In addition to these predictive performance metrics, the training time for each model was
recorded to consider computational efficiency. This allows for an analysis of the trade-offs
between model performance and the resources required for training. The performance
evaluation was conducted on the independent preprocessed test dataset using both the default
models and the tuned versions of selected classifiers.

Table4. Confusion Matrix.

Model TN FP FN TP
Logistic Regression 967 145 1221 1541
K-Nearest Neighbors 979 133 357 2405
Decision Tree 1065 47 1120 1642
Random Forest 1105 7 8 2754

Gradient Boosting Machines 1050 62 490 2272
XGBoost 1101 11 6 2756
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LightGBM 1103 9 10 2752
Support Vector Machine 1046 66 1181 1581
Gaussian Naive Bayes 1069 43 1647 1115

AdaBoost Classifier 944 168 653 2109
Extra Trees Classifier 1102 10 10 2752

CatBoost Classifier 1094 18 25 2737
Deep Learning 1080 32 627 2135

Table5. Performance Evaluation Metrics.

Metric Calculation

Accuracy (TP+TN) / (TP+TN+FP+FN)
Precision (P) TP/(TP+FP)

Recall (R)  TP/(TP+FN)

F1-score 2x(PxR) / (P+R)

Specificity  TN/(TN+FP)

ROC curve  TPR (y-axis) vs. FPR (x-axis)

Default Model Performance

An initial evaluation was conducted by training a diverse set of thirteen classification models
using their default hyperparameters on the SMOTE-resampled training data and assessing
their performance on the independent test set [Shrivastava, 2024)]. In addition to standard
performance metrics, the training time for each model was recorded to consider computational
efficiency. Table 6 presents the key performance metrics and training duration for all default
models, sorted by their ROC AUC score. The visualizing performance comparison for the 13
models is displayed in Fig. 1.

For comparing the performance of the different machine learning models in this study, we
primarily focus on ROC AUC and F1-Score as robust overall indicators of performance on
imbalanced data. Additionally, Recall (Sensitivity) and Specificityarecarefully examined to
understand the critical trade-off between minimizing false negatives and false positives,
which is paramount in a medical diagnostic context. The results reveal distinct tiers of
performance and highlight the trade-offs between predictive power and computational cost
(training time) at the default settings.

The highest predictive performance, as measured by ROC AUC and other key metrics, is
concentrated among the ensemble and tree-based models: Random Forest (0.9994 ROC AUC),
Extra Trees Classifier (0.9994 ROC AUC), LightGBM (0.9994 ROC AUC), XGBoost
(0.9993 ROC AUC), and CatBoost Classifier (0.9985 ROC AUC). These models consistently
achieved Accuracy, Precision, Recall, F1-Score, and Specificity exceeding 0.98. While their
predictive capabilities at default settings are very similar and exceptionally high, significant
differences emerge in their training times. LightGBM stands out as particularly efficient,
training in just 0.19 seconds, followed by XGBoost (0.31s), Extra Trees (0.41s), CatBoost
(0.97s), and Random Forest (0.99s). For practical applications where rapid retraining or
development cycles are important, the speed offered by LightGBM, XGBoost, and Extra
Trees is a notable advantage.

Beyond this top group, Gradient Boosting Machines (0.9588 ROC AUC, 3.96s) and the Deep
Learning (MLP) model (0.9511 ROC AUC, 103.13s) show a considerable drop in ROC AUC
and generally higher training times compared to the leading boosted trees. The MLP's training
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., time is dependent on hyperparameters like epochs and batch size, but even 50 epochs resulted

® in a relatively longer duration compared to most other default models.
Simpler models like Decision Tree (0.06s), K-Nearest Neighbors (0.07s), Logistic Regression
(0.13s), and Gaussian Naive Bayes (0.01s) exhibit significantly lower training times, often
completing in milliseconds or a fraction of a second. Gaussian Naive Bayes is the fastest to
train. However, this efficiency comes at the cost of predictive performance, with ROC AUC
values ranging from 0.7361 to 0.9406. Among these faster models, KNN achieves the best
balance of speed and performance, with a respectable ROC AUC of 0.9406. The Support
Vector Machine, while theoretically powerful, shows the longest training time (119.77s) at
default settings with the RBF kernel, coupled with relatively modest performance metrics
compared to the faster top models.
In summary, the default evaluation reveals a clear trade-off between training time and
predictive performance. While the top ensemble methods demonstrate exceptional
classification accuracy and discriminatory power, models like LightGBM, XGBoost, and
Extra Trees offer a compelling combination of high performance and computational
efficiency. Simpler models are faster but generally less accurate. This initial analysis guides
the selection of models for the hyperparameter tuning phase, prioritizing those with high
potential based on their default performance metrics, while also keeping computational cost in
mind for practical considerations.
The Receiver Operating Characteristic (ROC) curve provides a visual representation of a
classifier's ability to distinguish between positive and negative classes across various
probability thresholds. The Area Under the ROC Curve (AUC) quantifies this discriminatory
power, with values closer to lindicating better performance. Fig.2 displays the ROC curves
for all models evaluated at default settings. Notably, a distinct group of models—Random
Forest, Extra Trees Classifier, LightGBM, XGBoost, and CatBoost Classifier—exhibits
curves tightly positioned near the top-left corner of the plot, corresponding to exceptionally
high AUC values ranging from 0.9985 to 0.9994. This visually confirms their superior
discriminatory ability, achieving high True Positive Rates while maintaining low False
Positive Rates across different thresholds.

Table6.Performance Evaluation of ML Models.

Model Accura Precisi Recall F1- Specifici ROC Training
cy on (Sensitivity)  Score ty AUC Time (5)
Random Forest 0.9961 0.9975 0.9971 0.9973 0.9937 0.9994 0.9
Extra Trees Classifier 0.9948 0.9964 0.9964 0.9964 0.9910 0.9994 0.41
LightGBM 0.9951 0.9967 0.9964 0.9966 0.9919 0.9994 0.19
XGBoost 0.9956 0.9960 0.9978 0.9969 0.9901 0.9993 0.31
CatBoost Classifier  0.9889 0.9935 0.9909 0.9922 0.9838 0.9985 0.97
ﬁr;‘c‘:l‘ien'gsB"“s"“g 0.8575 0.9734 0.8226 0.8917 0.9442 09588 3.96
Deep Learnin
(MLPP) g 0.8299 0.9852 0.7730 0.8663 0.9712 0.9511 103.13
K-Nearest Neighbors 0.8735 0.9476 0.8707 0.9075 0.8804 0.9406 0.07
AdaBoost Classifier 0.7881 0.9262 0.7636 0.8371 0.8489 0.9005 1.75
Decision Tree 0.6988 0.9722 0.5945 0.7378 0.9577 0.8439  0.06
Support Vector 0.6781 0.9599 0.5724 0.7172 0.9406 0.8152 119.77

Machine



Logistic Regression  0.6474 0.9140 0.5579 0.6929 0.8696 0.7644 0.13
Gaussian Naive Bayes 0.5638 0.9629 0.4037 0.5689 0.9613 0.7361 0.01

Model Performance Comparison Across Key Metrics (All Default Models)

Logistic Regression (Default) Metric
BN Accuracy
B Precision
K-Nearest Neighbors (Default) B Recall (Sensitivity)
BN Fl-Score
- mmm specificity
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Fig. 1.Visualizing performance comparison (all models).
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Fig. 2 ROC curves for all models evaluated.

Conversely,the remaining models show curves progressively closer to the diagonal random
classifier line (AUC = 0.5), indicating lower discriminatory power. Models like Gradient
Boosting Machines and the Deep Learning MLP perform moderately well (AUCs around



o, 0.95), positioned below the top tier but still above random chance. Simpler models such as

© Logistic Regression and Gaussian Naive Bayes yield curves closest to the diagonal, reflecting
their limited capacity to separate the classes effectively compared to the more complex
ensemble and neural network approaches. This ROC analysis visually reinforces that
ensemble and advanced tree-based methods provide the strongest discrimination performance
in this liver disease prediction task at default configurations.

Hyperparameter Tuning Results

Based on the promising performance of several models at their default settings,
hyperparameter tuning was performed using RandomizedSearchCV with 5-fold Stratified K-
Fold cross-validation, optimizing for ROC AUC. This process allowed for a more thorough
exploration of the model's potential and provided a more statistically validated estimate of
performance through cross-validation. Table 7 summarizes the best hyperparameters found
and their corresponding best cross-validation ROC AUC scores for the selected models.

The high cross-validation ROC AUC scores achieved by the tuned models (all above 0.99)
indicate that these models are consistently performing well across different subsets of the
training data, providing statistical confidence in their predictive capability.

Final Performance Comparison (Top Default and Tuned Models)

For the final comparison, we selected the top 5 default models based on their initial ROC
AUC from the default evaluation and included all models that underwent hyperparameter
tuning. These models were then evaluated on the independent test set. Table 8 presents a
comprehensive comparison of their performance metrics and training times, sorted by ROC
AUC score in descending order.The visualizing performance comparison for the top default
and tuned models is displayed in Fig. 3.

Discussion of Results

The final comparison, sorted by ROC AUC (Table 8), highlights that both the top performing
default models and their tuned counterparts achieve exceptionally high performance metrics
for liver disease prediction on this dataset. Specifically, the tuned versions of Random Forest,
LightGBM, and XGBoost, along with the default versions of Random Forest, Extra Trees,
and LightGBM, demonstrate the highest ROC AUC scores, all at 0.9994 or higher, indicating
outstanding discriminatory power. Tuned Random Forest achieved the highest ROC AUC on
the test set at 0.9995.

Comparing the default and tuned versions reveals the impact of hyperparameter optimization.
While the default ensemble models already performed very well, tuning resulted in slight
improvements in metrics like Recall, Precision, and F1-Score for some models, and
importantly, led to the highest observed ROC AUC. For instance, Tuned LightGBM achieved
a remarkable Recall of 0.9996, indicating its ability to correctly identify almost all positive
cases. Tuned Random Forest not only achieved the highest ROC AUC but also the highest
Specificity at 0.9973.

The use of Stratified K-Fold cross-validation during the hyperparameter tuning process
provides statistical validation for the performance estimates of the tuned models. The high
and consistent cross-validation scores (Table7) demonstrate that these models' performance is
not overly sensitive to the specific data split used for training and validation, increasing
confidence in their robustness.

A crucial consideration for practical application is the trade-off between performance and
computational efficiency. While tuning generally improved performance and led to the best
overall models by ROC AUC, it significantly increased the training time compared to using
default parameters, as the reported training times for tuned models include the entire



-

o RandomizedSearchCV process. Default LightGBM, XGBoost, and Extra Trees Classifier
= remain highly attractive options due to their combination of very high performance (ROC
AUC of 0.9994 or 0.9993) and significantly faster training times (under 0.5 seconds)
compared to their tuned versions (hundreds of seconds) or other models like Tuned Random
Forest (over 1700 seconds). For scenarios where rapid model training or frequent retraining is
required, the default configurations of these boosting algorithms present a favorable balance.
The ROC curve analysis for the models included in the final comparison (Fig. 4) visually
reinforces these findings, with the curves for the top default and tuned models closely
clustered near the top-left corner, demonstrating their superior ability to distinguish between
liver patients and non-liver patients.

Table7.Hyperparameter Tuning Results (Optimized for ROC AUC).

Model Best Best Parameters

Cross-

Validation

ROC

AUC
XGBoost 0.99989  {'subsample’: 0.7, 'reg_lambda': 0.01, 'reg_alpha'": 0.01, 'n_estimators': 1000,
(Tuned) 'min_child weight': 1, 'max_depth': 10, 'learning_rate': 0.05, 'gamma': 0.1,

'colsample:bytree': 0.7}
LightGBM 0.99991  {'subsample'’: 0.8, 'reg lambda': 0.001, 'reg_alpha': 0.1, 'num_leaves": 31,

(Tuned) 'n_estimators': 200, 'min_child samples': 20, 'max_depth': 10, 'learning_rate":
0.2, 'colsample bytree': 0.9}

CatBoost 0.99984  {'subsample'’: 0.9, 'learning_rate': 0.2, 12 leaf reg': 5, 'iterations': 200, 'depth':

Classifier 10, 'border count': 32}

(Tuned)

Random 0.99985  {'n_estimators': 300, 'min_samples_split": 5, 'min_samples_leaf': 2,

Forest (Tuned) 'max_features': 'sqrt', 'max_depth': 20, 'bootstrap': False}

Extra Trees  0.99986  {'n_estimators': 100, 'min_samples_split": 5, 'min_samples_leaf": 1,

Classifier 'max_features': 'sqrt', 'max_depth': None, 'bootstrap': False}

(Tuned)

K-Nearest 0.99393  {'weights'": 'distance', 'n_neighbors': 17, 'metric": 'manhattan'}

Neighbors

(Tuned)

Table8.Final Model Performance Comparison on Test Set (Top 5 Default and Tuned Models).
Recall F1- ROC Training

Model Accuracy Precision (Sensitivity) Score Specificity ,yc  Time (®*
Random Forest 5951 .9989  0.9957 0.9973 0.9973  0.9995 1748.71
(Tuned)

LightGBM (9979 0.9975  0.9996 0.9986 0.9937  0.9994 271.96
(Tuned)

XGBoost 0.9977  0.9986  0.9982 0.9984 0.9964  0.9994 223.47
(Tuned)

Random Forest o561 9975 0.9971 0.9973 0.9937  0.9994 0.99
(Default)

Extra Trees 0.9948  0.9964 0.9964 0.9964 0.9910 0.9994 0.41



o Classifier
™ (Default)

LightGBM
(Default)

XGBoost
(Default)

CatBoost
Classifier 0.9941
(Tuned)

Extra Trees
Classifier 0.9951
(Tuned)

CatBoost
Classifier 0.9889
(Default)

KNN (Tuned) 0.9378

0.9951

0.9956

0.9967

0.9960

0.9949

0.9975

0.9935

0.9857

0.9964

0.9978

0.9967

0.9957

0.9909

0.9261

0.9966 0.9919

0.9969 0.9901

0.9958 0.9874

0.9966 0.9937

0.9922 0.9838

0.9550 0.9667

0.9994

0.9993

0.9993

0.9993

0.9985

0.9893

0.19

0.31

509.98

617.29

0.97

44.88

* Training Time for Tuned models includes the time taken for the RandomizedSearchCV

Process.

Model Performance Comparison Across Key Metrics (Top 5 Default and Tuned Models)

Random Forest (Default)

XGBoost (Default)

LightGBM (Default)

Extra Trees Classifier (Default)

CatBoost Classifier (Default)

XGBoost (Tuned)

Model

LightGBM (Tuned)

CatBoost (Tuned)
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Extra Trees (Tuned)

KNN (Tuned)
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Fig. 3. Visualizing performance comparison (top 5 default and tuned models).
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Fig. 4. ROC curve comparison (top 5 default and tuned models).

In addition to the aggregated performance metrics, analyzing the confusion matrices provides
detailed insight into how each model performs in correctly classifying positive (Liver Patient)
and negative (Non Liver Patient) instances. Table 4 presented these components for the
default models.For the tuned models, the confusion matrix components on the independent
test set are presented in Table 9.

Table9. Confusion Matrix Components for Tuned Models on Test Set.

Model TN FP FN TP

Random Forest (Tuned) 11093 12 2750
XGBoost (Tuned) 11084 5 2575
LightGBM (Tuned) 11057 1 2761

Extra Trees Classifier (Tuned) 11057 12 2750
CatBoost Classifier (Tuned) 1098 14 9 2753
K-Nearest Neighbors (Tuned) 107537 204 2558

Analysis of Table 9 shows that the top-performing tuned models, particularly LightGBM,
XGBoost, Random Forest, and Extra Trees, exhibit very low numbers of False Positives (FP)
and False Negatives (FN), aligning with their high Precision, Recall, and Specificity scores
presented in Table 8. For instance, Tuned LightGBM has only 1 False Negative, highlighting
its exceptional ability to identify positive cases. Tuned Random Forest shows only 3 False
Positives, indicating a very high accuracy in classifying non-patients. Tuned KNN, while
showing improvement over its default counterpart (Table 4), still has a considerably higher
number of False Negatives compared to the tree-based ensemble models, which is reflected in
its lower Recall. These detailed components further support the findings from the aggregated
metrics and are crucial for understanding the specific types of errors each model makes,
which is vital in a medical diagnostic context.



-, In summary, the experimental results strongly support the effectiveness of ensemble and

< advanced tree-based models, particularly Random Forest, LightGBM, XGBoost, Extra Trees,
and CatBoost, for liver disease prediction. Hyperparameter tuning can yield marginal
performance improvements, achieving the highest ROC AUC, but at the cost of significantly
increased training time. The rigorous methodology, including preprocessing pipelines,
SMOTE, and cross-validation during tuning, enhances the reliability and validity of these
findings.

CONCLUSION AND FUTURE WORK

This study conducted a systematic and comprehensive evaluation of a diverse suite of
machine learning classification algorithms for the prediction of liver disease using the Liver
Patient Dataset (LDPD). The primary objective was to benchmark the performance of these
models, identify those demonstrating superior predictive capabilities and computational
efficiency, and explore the impact of hyperparameter tuning.

The experimental results demonstrate that machine learning classification is highly effective
for this task, achieving exceptionally high performance metrics across several models,
particularly within the ensemble and advanced tree-based categories. The initial evaluation
with default hyperparameters established a strong baseline, with models like Random Forest,
Extra Trees Classifier, LightGBM, XGBoost, and CatBoost Classifier achieving ROC AUC
scores above 0.99.

Subsequently,hyperparameter tuning using RandomizedSearchCV with Stratified K-Fold
cross-validation was applied to a subset of promising models. This process, while
computationally more intensive, led to marginal but significant improvements in performance,
achieving the highest observed metrics. The final comparison, incorporating both top default
and tuned models, revealed that Tuned Random Forest achieved the highest ROC AUC
(0.9995) and Specificity (0.9973) on the independent test set. Tuned LightGBM demonstrated
the highest Recall (0.9996), alongside a very high ROC AUC (0.9994). Tuned XGBoost also
exhibited outstanding performance across key metrics, with a ROC AUC of 0.9994. These
results solidify the finding that ensemble methods, when appropriately tuned, can achieve
near-perfect discrimination and high accuracy in identifying both positive and negative cases
in this dataset.

A crucial insight from this study is the significant trade-off between model performance and
computational efficiency (training time). While hyperparameter tuning yielded the highest
performance, it drastically increased the training duration. Conversely, the default
configurations of models like LightGBM, XGBoost, and Extra Trees Classifier provided
exceptionally high performance (ROC AUC = 0.9993) with significantly faster training
times (under 0.5 seconds). This highlights that for practical applications where rapid model
deployment or frequent retraining is necessary, prioritizing slightly lower, but still excellent,
performance with significantly faster training from default configurations of efficient
algorithms like LightGBM could be more suitable.

The rigorous methodology employed, including the use of preprocessing pipelines to prevent
data leakage, SMOTE to address class imbalance, and Stratified K-Fold cross-validation
during tuning for robust performance estimation, enhances the reliability and validity of these
findings. Analysis of the confusion matrices provided detailed insights into the types of errors
made, confirming the low rates of both false positives and false negatives among the top
models.

Based on this comprehensive evaluation, the tuned versions of Random Forest, LightGBM,
and XGBoost are identified as the top-performing models. Considering the performance-
efficiency trade-off, the default configurations of LightGBM, XGBoost, and Extra Trees
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Classifier are also highly promising candidates for practical implementation due to their
strong performance combined with rapid training.

For future work, external validation on independent datasets is a crucial next step before these
models can be considered for clinical application; additionally, exploring deeper model
interpretability using techniques like SHAP and LIME can provide valuable insights into
feature influence, and investigating the practical challenges of clinical integration is essential
for real-world deployment.
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