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Abstract.Liver disease poses a significant global health burden, with high mortality 

rates exacerbated by challenges in early detection. Machine learning (ML) offers 

promising avenues for developing automated diagnostic tools to address this critical 
need. While various ML classifiers have been explored for liver disease prediction, a 

comprehensive, systematic comparison of a wide range of modern algorithms, 

incorporating robust pre-processing, handling of class imbalance, hyper parameter 

tuning with cross-validation, and analysis of computational efficiency, is essential to 

guide the selection of models for practical application. This study systematically 

evaluates thirteen diverse ML classification algorithms using the Liver Patient Dataset 

(LDPD). The methodology includes data pre-processing with imputation, encoding, and 

standardization within a pipeline to prevent data leakage, handling class imbalance 

using SMOTE, splitting data into training and testing sets, and employing 

RandomizedSearchCV with Stratified K-Fold cross-validation for hyper parameter 

optimization. Performance was assessed using key metrics including Accuracy, 
Precision, Recall, Specificity, F1-Score, and ROC AUC on an independent test set, 

alongside training time. Results demonstrate that ensemble and advanced tree-based 

methods achieve superior predictive performance. Hyper parametertuning further 

optimized performance, with Tuned Random Forest achieving the highest ROC AUC 
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(0.9995) and Specificity (0.9973), and Tuned LightGBM achieving the highest Recall 

(0.9996). The study highlights a crucial trade-off: while tuning yields peak 

performance, default configurations of efficient models like LightGBM and XGBoost 

offer exceptionally high performance (ROC AUC ≥ 0.9993) combined with 
significantly faster training times (≤ 0.41 seconds), providing a favorable balance for 

practical application. This research identifies highly effective and efficient ML models 

for liver disease prediction, contributing empirical evidence to support the development 

of automated diagnostic aids. 

 

Keywords.Liver Disease Prediction, Machine Learning Classification,Class Imbalance, 

Hyperparameter Tuning, Ensemble Methods. 

 

INTRODUCTION 

Liver disease represents a significant global health challenge, contributing to substantial 
morbidity and mortality worldwide. As highlighted by recent data, the burden of liver disease 

is particularly acute in regions like India, where 264,193 deaths were reported in 2018, 

corresponding to an age-adjusted death rate of approximately 23.00 per 100,000 population 

[World Life Expectancy, 2022]. The liver, a vital organ responsible for detoxification and 

numerous metabolic functions, is susceptible to damage from various etiologies, including 

viral infections, metabolic disorders, excessive alcohol consumption, and genetic factors 

[SindhujaandPriyadarsini, 2016;Md et al., 2023]. While conditions like cirrhosis and liver 

failure represent advanced stages, early detection of liver damage is often challenging due to 

its insidious progression and non-specific initial symptoms [Md et al., 2023]. This delayed 

identification can severely limit therapeutic options and negatively impact patient outcomes, 

underscoring the critical need for timely and accurate diagnostic tools to facilitate early 
intervention and improve prognosis [Shaheamlung, KaurandKaur, 2020]. 

The growing availability of health data and advancements in computational capabilities have 

positioned machine learning (ML) as a powerful paradigm for enhancing medical diagnosis 

and prognosis [Md et al., 2023]. Classification techniques, in particular, have shown promise 

in developing automated tools for identifying various diseases based on patient data. In the 

context of liver disease, ML algorithms have been explored for tasks such as classifying liver 

fibrosis stages, predicting patient survival, and distinguishing between different liver 

conditions [Md et al., 2023]. However, the landscape of ML applications in liver disease 

prediction is continuously evolving. While numerous studies have investigated various 

algorithms, there remains a need for comprehensive, head-to-head comparisons of a wide 
array of modern and diverse ML classifiers on relevant datasets. Furthermore, the impact of 

critical steps like systematic data preprocessing, effective handling of class imbalance, and 

rigorous hyperparameter tuning on the performance of these models for liver disease 

prediction warrants further investigation to identify the most robust and reliable approaches 

for potential clinical application. 

This study aims to address these gaps by conducting a systematic and comprehensive 

evaluation of multiple machine learning classification algorithms for liver disease prediction 

using a publicly available dataset. The primary objectives are: (1) to benchmark the 

performance of a diverse set of ML classifiers; (2) to identify the most effective and efficient 

models for this prediction task based on a thorough analysis of various performance metrics, 

including those crucial in medical diagnosis such as Recall and Specificity, alongside overall 
discrimination ability (ROC AUC) and computational efficiency (training time). The rationale 

behind this research is to provide a data-driven comparison to guide the selection of suitable 

ML models for developing automated liver disease screening or diagnostic support tools. This 

work contributes to the field by offering a detailed comparative analysis of numerous 



 

algorithms, demonstrating the practical impact of different techniques, and highlighting the 

trade-offs between model performance and efficiency in the context of liver disease prediction.  

The implemented methodology involves standard data preprocessing techniques, addressing 

class imbalance using SMOTE, splitting the data into training and testing sets, training and 
evaluating a broad range of classifiers, and conducting a staged performance comparison 

analysis of both models. 

The remainder of this paper is organized as follows: Section 2 presents a review of the 

existing literature on machine learning applications in liver disease classification and 

detection. Section 3 provides a detailed explanation of the dataset, the proposed architecture, 

the algorithms utilized, and the preprocessing steps. Section 4 describes the experimental 

setup and presents the evaluation results. Section 5 discusses the conclusion and outlines 

potential directions for future work. 

 

LITERATURE REVIEW 

This section reviews existing research on applying machine learning classification techniques 

for liver disease prediction and diagnosis, focusing on commonly used algorithms, datasets, 

and key findings to establish the context for this study. 

Machine learning models such as Support Vector Machines (SVM), Logistic Regression, 

Naïve Bayes, Decision Trees (DT), Random Forest, K-Nearest Neighbors (KNN), and 

Artificial Neural Networks (ANN), along with various boosting algorithms, have been widely 

applied to classify liver diseases [Ramana et al., 2011]. Comparative studies on datasets like 

the Andhra Pradesh (AP), UCLA, UCI, and Indian Liver Patient Dataset (ILPD) show varied 

results regarding the best-performing algorithms. Some studies found KNN, backward 

propagation (a type of ANN), and SVM to be effective [Ramana et al.,2011], while others 

highlighted Decision Trees [Kumar andSahoo, 2013;Ayeldeen et al., 2015], C4.5 [Hashem et 
al., 2018, 1Durai et al., 2019], ANN [Sivakumar et al., 2019], or Bayesian networks [Jacob et 

al., 2018] as top performers in specific comparisons or on particular datasets. The influence of 

the dataset itself on model performance has also been noted [Ramana et al., 2011 

Ramana et al., 2012]. 

Researchers have also explored specific techniques and algorithms. Studies have compared 

models like SVM and backpropagation [Ma et al., 2018], focused on predicting specific 

conditions like fibrosis [Ayeldeen et al., 2015; Sontakke et al., 2017] or fatty liver disease 

[Jacob et al., 2018], and investigated the utility of risk factors [Wu et al., 2019]. Techniques 

such as feature selection [Ramana et al., 2012 ;Gogi, 2018 ; GeethaandArunachalam, 2021 

], and data normalization [Gogi, 2018] have been incorporated to improve model performance. 
While some work has focused on single algorithms with preprocessing and tuning 

[GeethaandArunachalam, 2021], the diverse findings across studies using different 

methodologies and datasets underscore the complexity of the problem and the lack of a 

universally agreed-upon optimal approach. 

Despite the extensive research, a key gap in the literature is the need for comprehensive, 

systematic comparisons of a wide range of modern machine learning classifiers evaluated 

under a consistent and rigorous methodology. Many studies focus on a limited set of 

algorithms or lack detailed consideration of crucial steps like robust preprocessing, handling 

class imbalance (although SMOTE is used in some implementations, its systematic evaluation 

across models is needed), and the impact on a broad scale. Furthermore, a thorough analysis 

that considers not only predictive performance metrics but also practical factors like 
computational efficiency (training time) is often missing but essential for real-world 

application. 

This study aims to address these gaps by providing a comprehensive and systematic 

evaluation of a wide array of machine learning classifiers. By employing a consistent 



 

methodology, including robust preprocessing pipelines and SMOTE for imbalance handling, 

and evaluating models across a standard set of performance metrics including training time, 

this research offers a valuable comparative analysis to identify effective and efficient models 

for liver disease prediction, contributing empirical evidence to the field. Furthermore, the 
analysis will explicitly consider the computational efficiency (training time) alongside 

predictive performance metrics, providing valuable insights for the practical application of 

these models in liver disease prediction. 

 

RESEARCH METHODOLOGY 

This study adopted a systematic machine learning workflow to develop and evaluate 

predictive models for the classification of liver disease. The comprehensive methodology 

encompasses data acquisition, rigorous preprocessing, strategies for handling class imbalance, 

model training, hyperparameter tuning, and a comprehensive performance evaluation process. 

The specific steps are elaborated in the following subsections. 
 

Data Acquisition and Initial Inspection 

The initial phase involved the acquisition of the dataset, identified as the Liver Patient Dataset 

(LDPD), which contains patient-specific information and related medical parameters relevant 

to liver disease diagnosis. The fundamental characteristics of the dataset, including its 

demographic scope, total number of records, and distribution across liver patient and non-

liver patient categories, as well as gender distribution, are summarized in Table 1. The dataset 

comprises ten predictor variables and one target variable. The predictor variables encompass 

demographic information (age, gender) and various biochemical markers related to liver 

function (Total Bilirubin, Direct Bilirubin, Alkaline Phosphatase, Alamine Aminotransferase 

(SGPT), Aspartate Aminotransferase (SGOT), Total Proteins, Albumin, and Albumin-to-
Globulin Ratio). The target variable indicates the diagnosis as either 'Liver Patient' or 'Non 

Liver Patient', expert-labeled to facilitate supervised learning. Detailed information regarding 

each attribute, including measurement units, value ranges, means, and standard deviations, is 

provided in Table 2. 

Table1.LDPD Dataset Description. 

Demography Total records Liver patients Not liver patients Male Female 

Worldwide liver 

patients 
30691 21917 8774 21986 7803 

 

Table2. Attributes’ Information of Dataset. 

Attribute Measurement unit Value range Mean Std 

Age (AG) Years 4–90 44.107 15.981 

Gender (GN) Categorical 0 or 1 0.775 0.483 

Total bilirubin (TB) mg/dl 0.4–75 3.370 6.256 

Direct bilirubin (DB) mg/dl 0.1–19.7 1.528 2.870 

Alkaline phosphatase (AP) U/L 63–2110 289.075 238.538 

Alanine aminotransferase (ALA) U/L 10–2000 81.489 182.159 

Aspartate aminotransferase (ASA) U/L 10–4929 111.470 280.851 

Total proteins (TP) g/dl 2.7–9.6 6.480 1.082 



 

Albumin (AL) g/dl 0.9–5.5 3.130 0.792 

Albumin and globulin ratio (AGR) g/dl 0.3–2.8 0.943 0.323 

Liver disease or not (LD or NLD) Categorical 0 or 1 0.286 0.452 

 

Upon loading the data into a structured format, a preliminary inspection was conducted to 

ascertain the dataset's overall structure and identify variable types (numerical and categorical). 

Basic descriptive statistics were reviewed to understand the distribution and central 

tendencies of the attributes. To gain deeper insights into data distribution patterns and the 

relationships between variables, particularly concerning the target variable, visual exploratory 

data analysis (EDA) techniques were employed, including the generation of histograms for 

individual attributes and pair plots to visualize attribute distributions and their relationships 

with the liver disease outcome. A critical assessment was also performed to identify the 

presence and extent of missing values across different features, which is a necessary precursor 
to data cleaning. Ensuring data quality by addressing such redundancies and inconsistencies, 

including the identification and potential handling of duplicate instances, is essential for 

improving the efficiency and reliability of subsequent modeling. Initial steps also involved 

recognizing the need to convert the categorical 'Gender' feature into a numerical format 

suitable for machine learning algorithms, which was performed through data encoding in a 

subsequent preprocessing step. 

 

Data Preprocessing 

Data preprocessing constituted a crucial stage focused on transforming the raw data into a 

clean, consistent, and numerically compatible format for machine learning, while strictly 
adhering to principles that prevent data leakage. This stage involved several key procedures. 

Missing values, identified during the initial inspection (the counts of which are detailed in 

Table 3), were handled through Imputation. Specifically, a Median Imputation strategy was 

applied to numerical features, replacing missing entries with the median value calculated 

solely from the training data subset to avoid test set influence. For the categorical 'Gender' 

feature, Mode Imputation was utilized to fill missing values with the most frequent category 

observed in the training subset. Categorical features, such as 'Gender', were converted into a 

numerical representation through One-Hot Encoding, creating binary indicator variables to 

ensure no ordinal relationship was incorrectly imposed. Furthermore, numerical features, 

which often exhibit widely varying scales, were subjected to Standardization (Z-score scaling). 

This technique transforms features to have a mean of zero and a standard deviation of one, 
standardizing their range. The Z-score method was also employed to address the presence of 

significant outliers observed in certain attributes, effectively neutralizing their 

disproportionate impact. Feature Scaling is a fundamental step for algorithms sensitive to 

feature magnitudes, ensuring that no single feature dominates the learning process, regardless 

of its original unit or range. 

All these preprocessing steps—imputation, encoding, and scaling—were encapsulated within 

a Pre-processing Pipeline using scikit-learn's Pipeline and ColumnTransformer classes. This 

theoretical framework guarantees that all fitting of preprocessing parameters occurs 

exclusively on the training data, and these learned parameters are then applied consistently to 

transform both the training and independent test sets, rigorously preventing data leakage. 
 

Table3. No of Missing Values in the Dataset. 

AG GN TB DB AP ALA ASA TP AL AGR 



 

AG GN TB DB AP ALA ASA TP AL AGR 

278 0 648 561 796 739 859 463 494 559 

 

Handling Class Imbalance 

The dataset utilized in this study exhibited a notable imbalance in the distribution of the target 

variable, with a higher prevalence of the positive class (Liver Patient). Addressing this 

inherent class imbalance was a critical step to mitigate potential model bias towards the 

majority class. This was achieved through Oversampling of the minority class. Specifically, 

the Synthetic Minority Over-sampling Technique (SMOTE) was applied to the pre-processed 
training data. SMOTE is a synthetic oversampling algorithm that generates artificial instances 

of the minority class by interpolating between existing minority samples and their k-nearest 

neighbours in the feature space. This process, applied only to the pre-processed training data, 

resulted in a training dataset with a more balanced class distribution, thereby enabling the 

subsequent models to learn the characteristics of the minority class more effectively. The 

independent test set was kept in its original class distribution to ensure performance 

evaluation reflected real-world scenarios. 

 

Model Training and Evaluation 

To establish a baseline performance and identify algorithms with high potential, a diverse 

suite of thirteen machine learning classification models was initially selected and trained 
using their default hyperparameters. These models were chosen to represent a broad spectrum 

of theoretical approaches to classification, encompassing Generalized Linear Modeling 

(Logistic Regression), Instance-Based Learning (K-Nearest Neighbors), Decision Tree 

Learning, various Ensemble Methods based on Bagging (Random Forest, Extra Trees) and 

Boosting (Gradient Boosting Machines, XGBoost, LightGBM, AdaBoost, CatBoost), a 

Kernel Method (Support Vector Machine with an RBF kernel), a Probabilistic Model 

(Gaussian Naïve Bayes), and an Artificial Neural Network (Multi-Layer Perceptron). Each 

selected model underwent Model Training by being fitted to the SMOTE-resampled and 

preprocessed training data. The diversity in algorithm selection was intentional, designed to 

enrich the comparative study by evaluating models with distinct underlying mechanisms and 
potential strengths in capturing different patterns within the data. Following training, each 

model's performance was evaluated on the independent preprocessed test dataset. 

 

Hyperparameter Tuning 

Following the initial evaluation of models with default parameters, hyperparameter tuning 

was performed on a subset of the most promising models to further optimize their 

performance. This process utilized RandomizedSearchCV, a robust technique for efficiently 

searching a predefined hyperparameter space. To ensure a reliable estimate of performance 

during tuning and mitigate the risk of overfitting to a single validation set, Stratified K-Fold 

cross-validation was employed with 5 splits (k=5). Stratification ensured that each fold 

maintained a representative distribution of the target classes. The optimization criterion for 
RandomizedSearchCV was the ROC AUC score, which is a suitable metric for evaluating 

classifier performance on imbalanced datasets by assessing the model's ability to discriminate 

between positive and negative classes across various thresholds. The tuning process involved 

fitting the models with various combinations of hyperparameters sampled from specified 

distributions and evaluating them using cross-validation on the resampled training data. The 

best set of hyperparameters for each model was selected based on the highest mean cross-

validation ROC AUC score. 

 



 

EXPERIMENTAL RESULTS AND PERFORMANCE EVALUATION 

The experimental evaluation was conducted on a ThinkPad L390 laptop equipped with an 

Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz 1.80 GHz, 24.0 GB RAM, and a 256GB SSD, 

running the Windows 10 Pro 64-bit operating system. The implementation, coding, and 
visualization were performed using Python within a Jupyter Notebook environment. 

 

Performance Evaluation Metrics 

The performance of the developed prediction models was assessed using a rigorous 

experimental protocol. The dataset was initially divided into an 80% training set and a 20% 

testing set using stratified random sampling to ensure that the proportion of target classes was 

maintained in both subsets. The confusion matrix served as the fundamental basis for 

performance evaluation, providing a detailed breakdown of classification outcomes: True 

Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN). The 

confusion matrix components for all evaluated default algorithms are presented in Table 4. 
Model performance was quantified using a suite of widely accepted evaluation metrics 

derived from the confusion matrix. These included Accuracy, Precision, Recall (Sensitivity), 

F1-Score, Specificity, and the Area Under the Receiver Operating Characteristic curve (ROC 

AUC). Table 5 shows the calculation of each evaluationmetric. In the context of medical 

diagnosis, the following metrics are particularly important: 

- Recall (Sensitivity): The proportion of actual positive cases (Liver Patients) that 

were correctly identified. High Recall is crucial for minimizing false negatives, 

which is paramount in medical diagnosis to avoid missing true cases. 

- Specificity: The proportion of actual negative cases (Non Liver Patients) that were 

correctly identified. High Specificity is important for minimizing false positives, 

preventing healthy individuals from being incorrectly diagnosed. 
- F1-Score: The harmonic mean of Precision and Recall, providing a balanced 

measure particularly useful for imbalanced datasets. 

- ROC AUC: An aggregate measure of the model's ability to discriminate between 

positive and negative classes across all possible classification thresholds. A higher 

AUC indicates superior discriminatory power, representing the trade-off between 

True Positive Rate and False Positive Rate. 

- Accuracy: The overall proportion of correctly classified instances. While a general 

indicator, it is not the primary comparison metric due to the potential for misleading 

results in the presence of class imbalance. 

- Precision: The proportion of instances predicted as positive that were actually 
positive. 

In addition to these predictive performance metrics, the training time for each model was 

recorded to consider computational efficiency. This allows for an analysis of the trade-offs 

between model performance and the resources required for training. The performance 

evaluation was conducted on the independent preprocessed test dataset using both the default 

models and the tuned versions of selected classifiers. 

 

Table4. Confusion Matrix. 

 Model                                      TN     FP      FN     TP  

 Logistic Regression    967    145    1221   1541  

 K-Nearest Neighbors   979    133     357   2405  

 Decision Tree   1065     47    1120   1642  

 Random Forest   1105      7       8   2754  

 Gradient Boosting Machines   1050     62     490   2272  

XGBoost  1101     11       6   2756  

https://www.sciencedirect.com/topics/computer-science/confusion-matrix


 

LightGBM  1103      9      10   2752  

 Support Vector Machine   1046     66    1181   1581  

 Gaussian Naïve Bayes   1069     43    1647   1115  

AdaBoost Classifier    944    168     653   2109  
 Extra Trees Classifier   1102     10      10   2752  

CatBoost Classifier   1094     18      25   2737  

 Deep Learning   1080     32     627   2135  

 
Table5. Performance Evaluation Metrics. 

Metric Calculation 

Accuracy (𝑇𝑃+𝑇𝑁) / (𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁) 

Precision (𝑃) TP/(TP+FP) 

Recall (𝑅) TP/(TP+FN) 

F1-score 2×(𝑃×𝑅) / (𝑃+𝑅) 

Specificity TN/(TN+FP) 

ROC curve TPR (y-axis) vs. FPR (x-axis) 

 

Default Model Performance 

An initial evaluation was conducted by training a diverse set of thirteen classification models 

using their default hyperparameters on the SMOTE-resampled training data and assessing 

their performance on the independent test set [Shrivastava, 2024)]. In addition to standard 

performance metrics, the training time for each model was recorded to consider computational 
efficiency. Table 6 presents the key performance metrics and training duration for all default 

models, sorted by their ROC AUC score. The visualizing performance comparison for the 13 

models is displayed in Fig. 1. 

For comparing the performance of the different machine learning models in this study, we 

primarily focus on ROC AUC and F1-Score as robust overall indicators of performance on 

imbalanced data. Additionally, Recall (Sensitivity) and Specificityarecarefully examined to 

understand the critical trade-off between minimizing false negatives and false positives, 

which is paramount in a medical diagnostic context. The results reveal distinct tiers of 

performance and highlight the trade-offs between predictive power and computational cost 

(training time) at the default settings.  
The highest predictive performance, as measured by ROC AUC and other key metrics, is 

concentrated among the ensemble and tree-based models: Random Forest (0.9994 ROC AUC), 

Extra Trees Classifier (0.9994 ROC AUC), LightGBM (0.9994 ROC AUC), XGBoost 

(0.9993 ROC AUC), and CatBoost Classifier (0.9985 ROC AUC). These models consistently 

achieved Accuracy, Precision, Recall, F1-Score, and Specificity exceeding 0.98. While their 

predictive capabilities at default settings are very similar and exceptionally high, significant 

differences emerge in their training times. LightGBM stands out as particularly efficient, 

training in just 0.19 seconds, followed by XGBoost (0.31s), Extra Trees (0.41s), CatBoost 

(0.97s), and Random Forest (0.99s). For practical applications where rapid retraining or 

development cycles are important, the speed offered by LightGBM, XGBoost, and Extra 

Trees is a notable advantage. 
Beyond this top group, Gradient Boosting Machines (0.9588 ROC AUC, 3.96s) and the Deep 

Learning (MLP) model (0.9511 ROC AUC, 103.13s) show a considerable drop in ROC AUC 

and generally higher training times compared to the leading boosted trees. The MLP's training 

https://www.sciencedirect.com/topics/computer-science/evaluation-metric


 

time is dependent on hyperparameters like epochs and batch size, but even 50 epochs resulted 

in a relatively longer duration compared to most other default models. 

Simpler models like Decision Tree (0.06s), K-Nearest Neighbors (0.07s), Logistic Regression 

(0.13s), and Gaussian Naïve Bayes (0.01s) exhibit significantly lower training times, often 
completing in milliseconds or a fraction of a second. Gaussian Naïve Bayes is the fastest to 

train. However, this efficiency comes at the cost of predictive performance, with ROC AUC 

values ranging from 0.7361 to 0.9406. Among these faster models, KNN achieves the best 

balance of speed and performance, with a respectable ROC AUC of 0.9406. The Support 

Vector Machine, while theoretically powerful, shows the longest training time (119.77s) at 

default settings with the RBF kernel, coupled with relatively modest performance metrics 

compared to the faster top models. 

In summary, the default evaluation reveals a clear trade-off between training time and 

predictive performance. While the top ensemble methods demonstrate exceptional 

classification accuracy and discriminatory power, models like LightGBM, XGBoost, and 
Extra Trees offer a compelling combination of high performance and computational 

efficiency. Simpler models are faster but generally less accurate. This initial analysis guides 

the selection of models for the hyperparameter tuning phase, prioritizing those with high 

potential based on their default performance metrics, while also keeping computational cost in 

mind for practical considerations. 

The Receiver Operating Characteristic (ROC) curve provides a visual representation of a 

classifier's ability to distinguish between positive and negative classes across various 

probability thresholds. The Area Under the ROC Curve (AUC) quantifies this discriminatory 

power, with values closer to 1indicating better performance. Fig.2 displays the ROC curves 

for all models evaluated at default settings. Notably, a distinct group of models—Random 

Forest, Extra Trees Classifier, LightGBM, XGBoost, and CatBoost Classifier—exhibits 
curves tightly positioned near the top-left corner of the plot, corresponding to exceptionally 

high AUC values ranging from 0.9985 to 0.9994. This visually confirms their superior 

discriminatory ability, achieving high True Positive Rates while maintaining low False 

Positive Rates across different thresholds. 

 

Table6.Performance Evaluation of ML Models. 

Model 
Accura

cy 

Precisi

on 

Recall 

(Sensitivity) 

F1-

Score 

Specifici

ty 

ROC 

AUC 

Training 

Time (s) 

Random Forest 0.9961 0.9975 0.9971 0.9973 0.9937 0.9994 0.99 

Extra Trees Classifier 0.9948 0.9964 0.9964 0.9964 0.9910 0.9994 0.41 

LightGBM 0.9951 0.9967 0.9964 0.9966 0.9919 0.9994 0.19 

XGBoost 0.9956 0.9960 0.9978 0.9969 0.9901 0.9993 0.31 

CatBoost Classifier 0.9889 0.9935 0.9909 0.9922 0.9838 0.9985 0.97 

Gradient Boosting 

Machines 
0.8575 0.9734 0.8226 0.8917 0.9442 0.9588 3.96 

Deep Learning 

(MLP) 
0.8299 0.9852 0.7730 0.8663 0.9712 0.9511 103.13 

K-Nearest Neighbors 0.8735 0.9476 0.8707 0.9075 0.8804 0.9406 0.07 

AdaBoost Classifier 0.7881 0.9262 0.7636 0.8371 0.8489 0.9005 1.75 

Decision Tree 0.6988 0.9722 0.5945 0.7378 0.9577 0.8439 0.06 

Support Vector 

Machine 
0.6781 0.9599 0.5724 0.7172 0.9406 0.8152 119.77 



 

Logistic Regression 0.6474 0.9140 0.5579 0.6929 0.8696 0.7644 0.13 

Gaussian Naïve Bayes 0.5638 0.9629 0.4037 0.5689 0.9613 0.7361 0.01 

 
Fig. 1.Visualizing performance comparison (all models). 

 

 
Fig. 2  ROC curves for all models evaluated. 

 

Conversely,the remaining models show curves progressively closer to the diagonal random 

classifier line (AUC = 0.5), indicating lower discriminatory power. Models like Gradient 

Boosting Machines and the Deep Learning MLP perform moderately well (AUCs around 



 

0.95), positioned below the top tier but still above random chance. Simpler models such as 

Logistic Regression and Gaussian Naïve Bayes yield curves closest to the diagonal, reflecting 

their limited capacity to separate the classes effectively compared to the more complex 

ensemble and neural network approaches. This ROC analysis visually reinforces that 
ensemble and advanced tree-based methods provide the strongest discrimination performance 

in this liver disease prediction task at default configurations. 

 

Hyperparameter Tuning Results 

Based on the promising performance of several models at their default settings, 

hyperparameter tuning was performed using RandomizedSearchCV with 5-fold Stratified K-

Fold cross-validation, optimizing for ROC AUC. This process allowed for a more thorough 

exploration of the model's potential and provided a more statistically validated estimate of 

performance through cross-validation. Table 7 summarizes the best hyperparameters found 

and their corresponding best cross-validation ROC AUC scores for the selected models. 
The high cross-validation ROC AUC scores achieved by the tuned models (all above 0.99) 

indicate that these models are consistently performing well across different subsets of the 

training data, providing statistical confidence in their predictive capability. 

 

Final Performance Comparison (Top Default and Tuned Models) 

For the final comparison, we selected the top 5 default models based on their initial ROC 

AUC from the default evaluation and included all models that underwent hyperparameter 

tuning. These models were then evaluated on the independent test set. Table 8 presents a 

comprehensive comparison of their performance metrics and training times, sorted by ROC 

AUC score in descending order.The visualizing performance comparison for the top default 

and tuned models is displayed in Fig. 3. 
 

Discussion of Results 

The final comparison, sorted by ROC AUC (Table 8), highlights that both the top performing 

default models and their tuned counterparts achieve exceptionally high performance metrics 

for liver disease prediction on this dataset. Specifically, the tuned versions of Random Forest, 

LightGBM, and XGBoost, along with the default versions of Random Forest, Extra Trees, 

and LightGBM, demonstrate the highest ROC AUC scores, all at 0.9994 or higher, indicating 

outstanding discriminatory power. Tuned Random Forest achieved the highest ROC AUC on 

the test set at 0.9995. 

Comparing the default and tuned versions reveals the impact of hyperparameter optimization. 
While the default ensemble models already performed very well, tuning resulted in slight 

improvements in metrics like Recall, Precision, and F1-Score for some models, and 

importantly, led to the highest observed ROC AUC. For instance, Tuned LightGBM achieved 

a remarkable Recall of 0.9996, indicating its ability to correctly identify almost all positive 

cases. Tuned Random Forest not only achieved the highest ROC AUC but also the highest 

Specificity at 0.9973. 

The use of Stratified K-Fold cross-validation during the hyperparameter tuning process 

provides statistical validation for the performance estimates of the tuned models. The high 

and consistent cross-validation scores (Table7) demonstrate that these models' performance is 

not overly sensitive to the specific data split used for training and validation, increasing 

confidence in their robustness. 
A crucial consideration for practical application is the trade-off between performance and 

computational efficiency. While tuning generally improved performance and led to the best 

overall models by ROC AUC, it significantly increased the training time compared to using 

default parameters, as the reported training times for tuned models include the entire 



 

RandomizedSearchCV process. Default LightGBM, XGBoost, and Extra Trees Classifier 

remain highly attractive options due to their combination of very high performance (ROC 

AUC of 0.9994 or 0.9993) and significantly faster training times (under 0.5 seconds) 

compared to their tuned versions (hundreds of seconds) or other models like Tuned Random 
Forest (over 1700 seconds). For scenarios where rapid model training or frequent retraining is 

required, the default configurations of these boosting algorithms present a favorable balance. 

The ROC curve analysis for the models included in the final comparison (Fig. 4) visually 

reinforces these findings, with the curves for the top default and tuned models closely 

clustered near the top-left corner, demonstrating their superior ability to distinguish between 

liver patients and non-liver patients. 

 

Table7.Hyperparameter Tuning Results (Optimized for ROC AUC). 

Model Best 

Cross-

Validation 

ROC 

AUC 

Best Parameters 

XGBoost 

(Tuned) 

0.99989 {'subsample': 0.7, 'reg_lambda': 0.01, 'reg_alpha': 0.01, 'n_estimators': 1000, 

'min_child_weight': 1, 'max_depth': 10, 'learning_rate': 0.05, 'gamma': 0.1, 

'colsample_bytree': 0.7} 

LightGBM 

(Tuned) 

0.99991 {'subsample': 0.8, 'reg_lambda': 0.001, 'reg_alpha': 0.1, 'num_leaves': 31, 

'n_estimators': 200, 'min_child_samples': 20, 'max_depth': 10, 'learning_rate': 

0.2, 'colsample_bytree': 0.9} 

CatBoost 

Classifier 

(Tuned) 

0.99984 {'subsample': 0.9, 'learning_rate': 0.2, 'l2_leaf_reg': 5, 'iterations': 200, 'depth': 

10, 'border_count': 32} 

Random 

Forest (Tuned) 

0.99985 {'n_estimators': 300, 'min_samples_split': 5, 'min_samples_leaf': 2, 

'max_features': 'sqrt', 'max_depth': 20, 'bootstrap': False} 

Extra Trees 

Classifier 

(Tuned) 

0.99986 {'n_estimators': 100, 'min_samples_split': 5, 'min_samples_leaf': 1, 

'max_features': 'sqrt', 'max_depth': None, 'bootstrap': False} 

K-Nearest 

Neighbors 

(Tuned) 

0.99393 {'weights': 'distance', 'n_neighbors': 17, 'metric': 'manhattan'} 

 

Table8.Final Model Performance Comparison on Test Set (Top 5 Default and Tuned Models). 

Model Accuracy Precision 
Recall 

(Sensitivity) 

F1-

Score 
Specificity 

ROC 

AUC 

Training 

Time (s)* 

Random Forest 

(Tuned) 
0.9961 0.9989 0.9957 0.9973 0.9973 0.9995 1748.71 

LightGBM 

(Tuned) 
0.9979 0.9975 0.9996 0.9986 0.9937 0.9994 271.96 

XGBoost 

(Tuned) 
0.9977 0.9986 0.9982 0.9984 0.9964 0.9994 223.47 

Random Forest 

(Default) 
0.9961 0.9975 0.9971 0.9973 0.9937 0.9994 0.99 

Extra Trees 0.9948 0.9964 0.9964 0.9964 0.9910 0.9994 0.41 



 

Classifier 

(Default) 

LightGBM 

(Default) 
0.9951 0.9967 0.9964 0.9966 0.9919 0.9994 0.19 

XGBoost 

(Default) 
0.9956 0.9960 0.9978 0.9969 0.9901 0.9993 0.31 

CatBoost 

Classifier 

(Tuned) 

0.9941 0.9949 0.9967 0.9958 0.9874 0.9993 509.98 

Extra Trees 

Classifier 

(Tuned) 

0.9951 0.9975 0.9957 0.9966 0.9937 0.9993 617.29 

CatBoost 

Classifier 

(Default) 

0.9889 0.9935 0.9909 0.9922 0.9838 0.9985 0.97 

KNN (Tuned) 0.9378 0.9857 0.9261 0.9550 0.9667 0.9893 44.88 

* Training Time for Tuned models includes the time taken for the RandomizedSearchCV 

process. 

 

 
Fig. 3. Visualizing performance comparison (top 5 default and tuned models). 



 

 
Fig. 4. ROC curve comparison (top 5 default and tuned models). 

 

In addition to the aggregated performance metrics, analyzing the confusion matrices provides 

detailed insight into how each model performs in correctly classifying positive (Liver Patient) 

and negative (Non Liver Patient) instances. Table 4 presented these components for the 

default models.For the tuned models, the confusion matrix components on the independent 

test set are presented in Table 9. 
 

Table9. Confusion Matrix Components for Tuned Models on Test Set. 

Model TN FP FN TP 

Random Forest (Tuned) 1109 3 12 2750 

XGBoost (Tuned) 1108 4 5 2575 

LightGBM (Tuned) 1105 7 1 2761 

Extra Trees Classifier (Tuned) 1105 7 12 2750 

CatBoost Classifier (Tuned) 1098 14 9 2753 

K-Nearest Neighbors (Tuned) 1075 37 204 2558 

 

Analysis of Table 9 shows that the top-performing tuned models, particularly LightGBM, 

XGBoost, Random Forest, and Extra Trees, exhibit very low numbers of False Positives (FP) 

and False Negatives (FN), aligning with their high Precision, Recall, and Specificity scores 

presented in Table 8. For instance, Tuned LightGBM has only 1 False Negative, highlighting 

its exceptional ability to identify positive cases. Tuned Random Forest shows only 3 False 

Positives, indicating a very high accuracy in classifying non-patients. Tuned KNN, while 

showing improvement over its default counterpart (Table 4), still has a considerably higher 

number of False Negatives compared to the tree-based ensemble models, which is reflected in 
its lower Recall. These detailed components further support the findings from the aggregated 

metrics and are crucial for understanding the specific types of errors each model makes, 

which is vital in a medical diagnostic context. 



 

In summary, the experimental results strongly support the effectiveness of ensemble and 

advanced tree-based models, particularly Random Forest, LightGBM, XGBoost, Extra Trees, 

and CatBoost, for liver disease prediction. Hyperparameter tuning can yield marginal 

performance improvements, achieving the highest ROC AUC, but at the cost of significantly 
increased training time. The rigorous methodology, including preprocessing pipelines, 

SMOTE, and cross-validation during tuning, enhances the reliability and validity of these 

findings. 

 

CONCLUSION AND FUTURE WORK 

This study conducted a systematic and comprehensive evaluation of a diverse suite of 

machine learning classification algorithms for the prediction of liver disease using the Liver 

Patient Dataset (LDPD). The primary objective was to benchmark the performance of these 

models, identify those demonstrating superior predictive capabilities and computational 

efficiency, and explore the impact of hyperparameter tuning. 
The experimental results demonstrate that machine learning classification is highly effective 

for this task, achieving exceptionally high performance metrics across several models, 

particularly within the ensemble and advanced tree-based categories. The initial evaluation 

with default hyperparameters established a strong baseline, with models like Random Forest, 

Extra Trees Classifier, LightGBM, XGBoost, and CatBoost Classifier achieving ROC AUC 

scores above 0.99. 

Subsequently,hyperparameter tuning using RandomizedSearchCV with Stratified K-Fold 

cross-validation was applied to a subset of promising models. This process, while 

computationally more intensive, led to marginal but significant improvements in performance, 

achieving the highest observed metrics. The final comparison, incorporating both top default 

and tuned models, revealed that Tuned Random Forest achieved the highest ROC AUC 
(0.9995) and Specificity (0.9973) on the independent test set. Tuned LightGBM demonstrated 

the highest Recall (0.9996), alongside a very high ROC AUC (0.9994). Tuned XGBoost also 

exhibited outstanding performance across key metrics, with a ROC AUC of 0.9994. These 

results solidify the finding that ensemble methods, when appropriately tuned, can achieve 

near-perfect discrimination and high accuracy in identifying both positive and negative cases 

in this dataset. 

A crucial insight from this study is the significant trade-off between model performance and 

computational efficiency (training time). While hyperparameter tuning yielded the highest 

performance, it drastically increased the training duration. Conversely, the default 

configurations of models like LightGBM, XGBoost, and Extra Trees Classifier provided 

exceptionally high performance (ROC AUC ≥ 0.9993) with significantly faster training 

times (under 0.5 seconds). This highlights that for practical applications where rapid model 

deployment or frequent retraining is necessary, prioritizing slightly lower, but still excellent, 

performance with significantly faster training from default configurations of efficient 

algorithms like LightGBM could be more suitable. 

The rigorous methodology employed, including the use of preprocessing pipelines to prevent 

data leakage, SMOTE to address class imbalance, and Stratified K-Fold cross-validation 

during tuning for robust performance estimation, enhances the reliability and validity of these 

findings. Analysis of the confusion matrices provided detailed insights into the types of errors 

made, confirming the low rates of both false positives and false negatives among the top 

models. 
Based on this comprehensive evaluation, the tuned versions of Random Forest, LightGBM, 

and XGBoost are identified as the top-performing models. Considering the performance-

efficiency trade-off, the default configurations of LightGBM, XGBoost, and Extra Trees 



 

Classifier are also highly promising candidates for practical implementation due to their 

strong performance combined with rapid training. 

For future work, external validation on independent datasets is a crucial next step before these 

models can be considered for clinical application; additionally, exploring deeper model 
interpretability using techniques like SHAP and LIME can provide valuable insights into 

feature influence, and investigating the practical challenges of clinical integration is essential 

for real-world deployment. 
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