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Abstract. Vehicle detection, a specialized subset of object detection, has gained 

significant importance in recent years, particularly in the realms of autonomous and 
assisted driving technologies. This field, while promising, grapples with several 

challenges including occlusion, scalability issues, and the complexity of real-world 

backgrounds. This paper sets out to provide a summary of recent state-of-the-art 

advancements in vehicle detection technology. First, it organizes vehicle detection 

approaches into three primary categories: classical methods, deep learning techniques, 

and hybrid approaches that combine elements of both. Within the deep learning 

category, the paper further distinguishes three subcategories: anchor-based methods, 

anchor-free methods, and attention-based techniques. Each of these approaches offers 

unique advantages and addresses different aspects of the vehicle detection challenge. 

Secondly, it provides a literature review of different papers on vehicle detection. 

 
Keywords. Vehicle detection, Deep neural networks, Traffic surveillance, Object 

detection. 

 

INTRODUCTION 

Recent years have seen remarkable advancements in artificial intelligence, with significant 

impacts on computer vision and, notably, vehicle detection technologies. The ability to 

accurately identify vehicles is crucial across various domains, including intelligent 

transportation systems, self-driving vehicles, and driver assistance platforms. For practical 

applications like driver assistance, vehicle detection systems must deliver both precision and 

speed to safeguard all road users. One persistent challenge in this field is dealing with 
occlusions, which are particularly prevalent in busy urban environments. 

This review aims to offer a comprehensive look at cutting edge methods currently employed 

in vehicle detection. By examining these state-of-the-art techniques, we seek to provide 
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insight into the current landscape of detection technologies and their capabilities in addressing 

real-world challenges. 

Generally speaking, vehicle detection system architecture consists of: A training phase and a 

testing phase (Fig. 1). 
Usually, in the training phase, the inputs are a collection of images of vehicles and their labels. 

These images undergo a pre-processing stage which includes operations like resizing, 

normalization, noise reduction...etc. This step creates uniform input data, establishing a 

consistent format that enables effective learning in subsequent stages. 

 
Fig. 1. General Vehicle Detection Framework. 

 

After pre-processing, comes feature extraction in order to identify significant visual elements 

from the images. These elements typically include edges, shapes, and textures and the 

characteristics that distinguish vehicles from their surroundings. The extracted features are 

then fed into a classifier, which is trained using the labelled data. During this phase, the 

classifier learns patterns and associations between the features and the corresponding labels. 
As a result, a trained classifier model is developed, capable of accurately identifying vehicles 

in new, unseen data. 

In the testing phase, the trained model is deployed to analyse real-world inputs. Camera-based 

sensor systems capture images or video containing vehicles, which are then passed through 

the same pre-processing pipeline to ensure consistency with the training data. The 

standardized images are subjected to feature extraction, where relevant attributes are isolated. 

These features are then passed to a predictor, which utilizes the trained classifier model to 

analyse the data. The predictor determines whether vehicles are present in the input and, if so, 

localizes them by drawing bounding boxes around each detected vehicle in the scene.  

The primary goal of data collection in the system mentioned is to enhance safety. However, 
some individuals may perceive it as an invasion of privacy.  Bloom et al. (2017) revealed that 

a significant number of people expressed discomfort with the idea of data being collected. In 

modern systems, data processing often involves sharing information with third parties, such as 

traffic management systems, which raises further privacy concerns. 



 

Fortunately, techniques like Transport Layer Security (TLS), Differential Privacy (DP), and 

K-anonymity are already being used to address this issue (Allen and Dierks , 1999 ; Dwork 

and Roth, 2013; Wang et al., 2020). Another concern is data retention.  

According to the European Data Protection Supervisor (2019a), there have been cases where 
users of car rental services were able to access and control vehicle systems, underscoring the 

importance of limiting data storage. Data should not be retained indefinitely; the European 

Data Protection Supervisor (2019b) recommends establishing a defined retention period for 

stored information. Similarly, the European Data Protection Board (EDPB) advocates for 

mechanisms that allow users to delete their personal data (EDPB, 2021). A further solution 

involves adopting a privacy-by-design approach, which emphasizes data minimization—

particularly in applications such as pedestrian detection—by collecting only what is strictly 

necessary (EDPB, 2021). 

From an ethical perspective, companies must ensure transparency with all stakeholders 

regarding the types of data collected, the purposes for collection, how the data is processed, 
and who has access to it (European Data Protection Supervisor, 2019b). Clear, visible 

notifications—such as stickers on vehicles to inform pedestrians that they are being 

recorded—can also contribute to greater awareness and accountability (Krontiris et al., 2020). 

Nonetheless, despite these efforts, current legislation remains insufficient and fails to address 

the full range of potential scenarios (IEEE Spectrum, 2024). 

 

CLASSIFICATION OF PEDESTRIAN DETECTION METHODS 

Vehicle detection techniques can be categorized into three main branches: Classical Methods, 

Deep Learning Methods, and Hybrid Methods (Fig. 2). 

 

Classical Methods 

This category includes traditional computer vision methods that use hand-crafted features and 

conventional algorithms, which were common before deep learning became prominent. 

Techniques like Histogram of Oriented Gradients (HOG), Support Vector Machines (SVM), 

and other feature-based approaches are part of this group. While these methods established 

the foundation for vehicle detection, they often struggle with complex scenarios compared to 

modern techniques. 

 

Deep learning Methods 

Deep learning techniques have revolutionized vehicle detection by enabling the development 

of more advanced and robust models. These approaches can generally be categorized into 
three main types: 

1) Anchor-Based Methods: These techniques rely on predefined anchor boxes to predict 

bounding boxes around vehicles. They are typically divided into: 

- One-stage detectors, such as You Only Look Once (YOLO) (Redmon et al., 2016) 

and Single Shot Detector (SSD) (Liu et al., 2016; Chen et al., 2022; Cao et al., 2020), 

which perform detection in a single step. These models offer faster inference but may 

compromise on accuracy. 

- Two-stage detectors, such as Fast Region-based Convolutional Neural Network (Fast 

R-CNN) (Girshick, 2015; Arora et al., 2022), which first generate region proposals 

and then classify them. This approach typically achieves higher accuracy at the cost of 

increased computational complexity. 
2) Anchor-Free Methods: These models eliminate the need for predefined anchor boxes 

by directly predicting object locations from the image. Notable examples include 

CenterNet (13; 34) and Fully Convolutional One-Stage Object Detection (FCOS) 



 

(Tian et al., 2019; IEEE Xplore, 2025a). Anchor-free methods are often simpler and 

can achieve faster inference with competitive performance. 

3) Attention-Based Methods: These methods incorporate attention mechanisms to 

enhance detection performance by focusing on the most informative regions of the 
image. Attention improves feature representation and is particularly effective in 

complex scenes. Prominent examples include the Detection Transformer (DETR) 

(Carion et al., 2020; S. P. & Mohandas, 2023) and Vision Transformers (ViT) 

(Dosovitskiy et al., 2020). 

 

Hybrid Methods 

These methods aim to build robust systems by integrating classical and deep learning 

techniques. They strive to balance traditional feature extraction with modern deep learning 

models, leveraging the strengths of both approaches while addressing their limitations. 

 

 
Fig. 2. Categorisation of different vehicle detection techniques. 

 

Here is a summary of some state-of-the-art papers: 

Li et al. (2023): This paper addresses the issue of low detection accuracy in vehicle and 

pedestrian detection models by incorporating a Convolutional Block Attention Module 

(CBAM) into the cross-stage partial Darknet-53 (CSPDarknet53)-tiny module to enhance 

feature extraction capabilities and mitigate the limitations of using a single attention module. 

Additionally, the original simple convolutional module is replaced with a Cross Stage Partial 

Dense Block Layer (CSP-DBL) to better preserve high-resolution features and improve 

detection accuracy. The public BDD100K dataset (BDD100K, 2024) is used for evaluation, 
employing average precision (AP), mean average precision (mAP), and recall as performance 

metrics. The proposed model achieves the highest precision and an mAP of 88.74%. The 

results also show improvements in recall by 0.73% for cars and 0.01% for people. However, 

the model records the lowest speed, with only 63 FPS. 

Xiong et al. (2023): This paper presents an improved lightweight YOLOX real-time vehicle 

detection algorithm that enhances both detection speed and accuracy while reducing 

parameter count. It introduces a lightweight backbone feature extraction network and a new α-

Complete Intersection-over-Union (α-CIoU) loss function to improve regression accuracy and 

convergence. Inspired by GhostNet, two new modules are proposed: 

- The Cross Stage Partial Ghost Module (CSPGhost Module or CSPGM), which splits 

input feature maps into two parts—one passes through stacked Ghost modules and the 
other merges via a cross-stage pathway. 
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- The CGM structure, which also splits input features into two branches, adjusts the 

output channel on one side and uses a derived feature map on the other before 

combining them. 

The α-CIoU loss function retains CIoU’s benefits but emphasizes high-IoU targets, 
optimizing detection frame regression without increasing inference time. The modified model 

is evaluated on the BIT-Vehicle dataset (Dong et al., 2015), which includes 9,850 images 

across categories like Bus, Microbus, Minivan, Sedan, SUV, and Truck. Metrics used include 

parameter count, model size (MB), FPS, and mAP@0.5. The results show a 0.99% 

improvement in mAP, a 41.2% reduction in parameters, and a 12.7% increase in FPS 

compared to the original YOLOX-S. 

S. P. and Mohandas (2023): The authors address DETR’s limitations in detecting small 

features and its slow training convergence. To enhance performance, they reduce the number 

of layers to 40, use a shortcut layer instead of max-pooling, and introduce a Spatial Pyramid 

Pooling (SPP) block. The model employs a modified ResNet-50 for feature extraction, 
followed by a transformer with a multi-head self-attention encoder-decoder and a feedforward 

network (FFN) for end-to-end detection. It is trained on the MS COCO 2017 dataset (Papers 

with Code, 2024a) and evaluated using a custom video dataset from KELTRON (KELTRON, 

2024) for vehicle detection. Evaluation metrics include precision, recall, mAP, FLOPS, and 

FPS. The model achieves a mAP of 51.31% on MS COCO 2017, outperforming SSD, 

YOLOv3-tiny, and the baseline DETR, but records the lowest FPS at 53, highlighting the 

need for speed optimization in real-time applications. Additionally, it shows a significant 

mAP improvement of 0.03 in the Wilcoxon test. 

Hong et al. (2020): This study tackles the problem of detecting multi-scale vehicle targets—

particularly small ones—in traffic surveillance videos. It proposes a codec-based vehicle 

detection algorithm built upon YOLOv3. The method introduces a new multi-level feature 
pyramid that integrates a codec module to better detect vehicles across various scales. Multi-

level features from the backbone are stitched into basic features, passed through the codec 

module, and merged with equivalent-scale decoder features for final detection. This enhances 

YOLOv3’s capability in vehicle detection, especially for small targets. 

 

Table 1. State Of The Art 

Paper Architecture Dataset Results 

Li et al. (2023) YOLOv4 tiny* BDD100K 

(2024) 

 

- Achieves an 88.74% mAP. A 

lower speed of 63 FPS. 

Xiong et al. (2023) YOLOX-based BIT-Vehicle 

(Dong et al. , 

2015) 

 

- 0.99% increase in mAP. 41.2% 

reduction in parameters. 

- 12.7% increase in FPS compared 

to the original YOLOX-S. 

S P and Mohandas 

(2023) 

DETR-SPP MS COCO 

2017 (Papers 

with Code , 

2024a) 

 

KELTRON 

(2024) 
 

- Achieved 51.31% mAP, 

outperforming SSD, YOLO V3 tiny 

and baseline DETR. 

Hong et al. (2020) 

 

YOLOv3-based KITTI (Geiger 

et al. 2013) 

 

- On KITTI, the algorithm 

achieved average precisions of 

95.04%, 92.39%, and 87.51% for 



 

 

In traffic surveillance videos. The key innovations of this article can be sited as follow: 

- A YOLOv3 Integration: The algorithm introduces the YOLOv3 algorithm to multi-

scale vehicle detection in traffic videos and improves upon it. 

- Feature Encoding and Decoding Structure Module: A module is proposed to generate 
high-order multi-scale feature maps through a simple U-shaped structure. 

- Attention Mechanism: A special diagnosis module integrated with an attention 

mechanism enhances the model’s expression ability. 

The evaluation of the proposed method is conducted using two main datasets: the KITTI 

dataset (Geiger et al., 2013), which was captured while driving in the rural areas surrounding 

Karlsruhe—including the city itself and nearby highways—and the UA-DETRAC dataset 

(Geiger et al., 2013), a real-world benchmark for multi-object detection and tracking. UA-

DETRAC comprises 10 hours of video footage recorded with a Canon EOS 550D camera 

across 24 distinct locations in Beijing and Tianjin, China. The videos were recorded at 25 

frames per second (fps) with a resolution of 960 × 540 pixels. 
As for evaluation metrics, average precision (AP) is used to assess the performance of the 

proposed architecture. 

- On the KITTI dataset, the results show that the proposed algorithm achieves an AP of 

95.04%, 92.39%, and 87.51% for the easy, moderate, and hard subsets, respectively—

outperforming YOLOv3 by 2.49%, 3.68%, and 9.73% in each subset while 

maintaining competitive speed relative to other models. 

- On the UA-DETRAC dataset, the proposed algorithm also demonstrates significant 

improvements over YOLOv3 across all detection conditions: easy, medium, hard, full, 

sunny, rainy, night, and cloudy. 

Hao et al. (2023): This paper addresses the challenge of multi-target vehicle detection in 

intelligent transportation systems (ITS), with a specific focus on detecting small and distant 
vehicles. To that end, the authors propose a network called Corner Pooling with Attention 

Mechanism (CPAM), which enables anchorless detection. The main contributions of the 

CPAM network include: 

- Hourglass with Coordinate Attention (Hourglass-CA) as the backbone: Based on 

Hourglass-104 but reduced to 54 layers to lighten the network and increase speed. 

Three collaborative attention mechanisms are introduced into the decoder to extract 

key information at three feature scales: 384, 384, and 256. 

- Multi-Level Attention Network (MLA): Designed to enhance feature maps 

generated by the backbone using attention mechanisms at multiple scales, this module 

improves detection accuracy for vehicles of various sizes—especially smaller ones. 

-UA-

DETRAC 

(Papers with 

Code, 2024b) 
 

easy, moderate, and hard 

subsets. 

- On UA-DETRAC, the algorithm 

significantly improved over YOLOv3 
across all detection conditions. 

Hao et al. (2023)] CPAM Network -MS COCO 

(Lin et al. , 

2014) 

-UA-

DETRAC 

(Wen et al., 

2020) 

 

 

- Outperformed most of the other 

detectors on both datasets. 



 

- Multi-Level Attention Loss Function: Calculates the discrepancy between predicted 

and ground-truth attention maps, allowing the network to prioritize relevant features 

and correct deviations during the upsampling process. 

The model is evaluated on two major datasets: MS COCO (Lin et al., 2014), which includes 
three vehicle types (car, bus, truck), and UA-DETRAC (Wen et al., 2020), which emphasizes 

detection under occlusion. 

 

Evaluation results: 

- On UA-DETRAC, the architecture achieves a mAP of 70.64%, outperforming 

detectors such as Faster R-CNN, YOLOv3, CenterNet, and CornerNet. The model 

scores 90.72%, 74.12%, and 52.94% in the easy, medium, and hard subsets, 

respectively. It also performs well across weather conditions, with a mAP of 76.16% 

(cloudy), 78.62% (sunny), and 59.37% (rainy). 

- On MS COCO, it achieves an AP of 43.3%, AP50 of 59.2%, AP75 of 46.9%, APs of 
24.4%, APm of 44.8%, and APl of 57.5%. 

 

CRITICAL ANALYSIS 

Current research demonstrates a clear shift toward combining multi-scale fusion, attention 

mechanisms, and lightweight backbones to improve both accuracy and efficiency. Traditional 

HOG-based approaches continue to benefit from modern refinements. For instance, standard 

HOG achieves 93% accuracy but suffers from errors due to inaccurate hypothesis generation 

(Cheon et al., 2012); enhanced HOG reaches 97% accuracy with near real-time performance, 

though it remains somewhat computationally demanding (Niknejad et al., 2012). Region-

driven HOG (RDHOG) further boosts accuracy to over 99% on traffic footage but proves 

ineffective in complex scenes with heavy occlusions (Wu et al., 2014). 
Meanwhile, Haar-like cascades achieve sub-5ms detection per window but fail in occluded or 

high-density traffic scenarios (IEEE Xplore, 2025b). Even deformable part models (DPM) 

improve through PCA-based filter compression and FFT-accelerated convolutions—reducing 

parameters by 30% and accelerating matching—yet continue to struggle with overlapping 

objects (Ma and Xue, 2024). Hybrid models such as Dense-ResNet architectures, which 

combine residual and dense connections, outperform YOLOv3 by more than 5 AP on small 

and medium vehicles but require two to three times more memory and approximately 50% 

longer training time (Sun et al., 2019). 

Two-stage frameworks like the Improved Region-based Convolutional Neural Network for 

Vehicle Detection (IRCNN-VD) eliminate background pixels using SIFT, incorporate hard 
negative mining, and leverage evolutionary hyperparameter tuning. This approach achieves 

0.85 mAP on the BOXY dataset (Behrendt, 2019) in under 1 ms—twice the speed of Faster 

R-CNN—though it incurs high computational cost and lacks robustness in adverse weather 

conditions (Djenouri et al., 2022). Similarly, Retinex preprocessing combined with a NAS-

optimized ResNet101 backbone and IoU-guided anchors boosts UA-DETRAC mAP from 

62.13% to 68.25%, and small-vehicle AP from 14.16% to 43.64%, but operates at less than 2 

FPS (Luo et al., 2021). 

Attention-enhanced architectures show further promise. As demonstrated by Li et al. (2023), 

incorporating CBAM into CSPDarknet53-tiny along with CSP-DBL yields 88.74% mAP on 

BDD100K, with improved recall for cars and pedestrians, while maintaining 63 FPS. In 

another study, a streamlined YOLOX-S variant reduces parameters by 41.2%, increases mAP 
by 0.99%, and improves FPS by 12.7% on the BIT-Vehicle dataset (Xiong et al., 2023). 

Transformer hybrids also deliver strong results: DETR-SPP, which integrates spatial pyramid 

pooling and a reduced ResNet-50 backbone, improves MS COCO mAP to 51.31%, 



 

outperforming SSD-YOLOv3 tiny, albeit at a lower speed of 53 FPS (S P and Mohandas, 

2023). 

In more challenging visibility scenarios, a Swin Transformer adaptation for hazy conditions 

achieves 91% AP on a custom Haze-Car dataset and 82.3% on the Real Haze-100 dataset, 
though at a modest cost to speed (Sun et al., 2022). A codec-based, multi-level feature 

pyramid combined with attention mechanisms and integrated into YOLOv3 delivers 95.04% 

AP on the KITTI dataset and significant improvements on UA-DETRAC under easy, 

medium, and hard settings (Hong et al., 2020). Finally, the anchor-free CPAM network—

featuring an Hourglass-CA backbone, multi-level attention modules, and a specialized 

attention loss function—achieves 70.64% mAP on UA-DETRAC and maintains strong AP 

scores under various weather conditions, along with competitive results on MS COCO (Hao 

et al., 2023). 

Based on these findings, it is clear that traditional approaches offer low complexity and real-

time performance but struggle in occlusion-rich or high-density environments. In contrast, 
deep learning-based methods significantly improve accuracy and small-object detection but 

introduce higher computational demands and reduced robustness under adverse conditions. 

Furthermore, attention-enhanced and transformer-based models advance detection under 

occlusion, multi-scale, and low-visibility scenarios, but require greater processing time and 

more powerful hardware. 

This highlights the importance of developing context-specific solutions rather than aiming for 

a universal vehicle detection model. 

 

FEATURE DIRECTIONS 

As previously discussed, occlusion remains one of the primary challenges that vehicle 

detection models must address. Real-world environments are highly dynamic, ranging from 
sunny to rainy, foggy, and other adverse weather conditions that often obscure vehicle 

visibility. These environmental variations significantly affect a model’s ability to accurately 

detect and recognize vehicles. At present, most algorithms are optimized for specific settings, 

and no universal solution has been developed that can adapt effectively across diverse 

conditions. This limitation underscores the importance of designing a unified framework that 

integrates multiple detection strategies to ensure robustness in varying weather scenarios 

(Berwo et al., 2023). 

Beyond environmental variability, achieving a balance between detection speed and accuracy 

also presents a significant design challenge. In most cases, improvements in one metric tend 

to come at the expense of the other, which can diminish the system’s overall robustness in 
real-world applications (Berwo et al., 2023). 

Given that the backbone of a deep learning model plays a crucial role in its performance, 

much of the current research is directed toward designing more advanced and efficient 

backbone architectures. These efforts aim to facilitate the delicate balance between speed and 

accuracy, which remains central to the development of high-performance vehicle detection 

systems (Berwo et al., 2023). 

 

CONCLUSION 

Vehicle detection is a vital area in computer vision, playing a key role in enhancing 

technologies like driver assistance systems. Despite challenges such as occlusion, varying 

object scales, and complex backgrounds, researchers are still continuing to try to develop 
more advanced and robust detection methods. While relatively significant progress has been 

made, the field still offers many opportunities for further research and innovation. 
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