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Abstract. Vehicle detection, a specialized subset of object detection, has gained
significant importance in recent years, particularly in the realms of autonomous and
assisted driving technologies. This field, while promising, grapples with several
challenges including occlusion, scalability issues, and the complexity of real-world
backgrounds. This paper sets out to provide a summary of recent state-of-the-art
advancements in vehicle detection technology. First, it organizes vehicle detection
approaches into three primary categories: classical methods, deep learning techniques,
and hybrid approaches that combine elements of both. Within the deep learning
category, the paper further distinguishes three subcategories: anchor-based methods,
anchor-free methods, and attention-based techniques. Each of these approaches offers
unique advantages and addresses different aspects of the vehicle detection challenge.
Secondly, it provides a literature review of different papers on vehicle detection.

Keywords. Vehicle detection, Deep neural networks, Traffic surveillance, Object
detection.

INTRODUCTION

Recent years have seen remarkable advancements in artificial intelligence, with significant
impacts on computer vision and, notably, vehicle detection technologies. The ability to
accurately identify vehicles is crucial across various domains, including intelligent
transportation systems, self-driving vehicles, and driver assistance platforms. For practical
applications like driver assistance, vehicle detection systems must deliver both precision and
speed to safeguard all road users. One persistent challenge in this field is dealing with
occlusions, which are particularly prevalent in busy urban environments.

This review aims to offer a comprehensive look at cutting edge methods currently employed
in vehicle detection. By examining these state-of-the-art techniques, we seek to provide
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. insight into the current landscape of detection technologies and their capabilities in addressing
“ real-world challenges.
Generally speaking, vehicle detection system architecture consists of: A training phase and a
testing phase (Fig. 1).
Usually, in the training phase, the inputs are a collection of images of vehicles and their labels.
These images undergo a pre-processing stage which includes operations like resizing,
normalization, noise reduction...etc. This step creates uniform input data, establishing a
consistent format that enables effective learning in subsequent stages.

Testing phase
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Fig. 1. General Vehicle Detection Framework.

After pre-processing, comes feature extraction in order to identify significant visual elements
from the images. These elements typically include edges, shapes, and textures and the
characteristics that distinguish vehicles from their surroundings. The extracted features are
then fed into a classifier, which is trained using the labelled data. During this phase, the
classifier learns patterns and associations between the features and the corresponding labels.
As a result, a trained classifier model is developed, capable of accurately identifying vehicles
in new, unseen data.

In the testing phase, the trained model is deployed to analyse real-world inputs. Camera-based
sensor systems capture images or video containing vehicles, which are then passed through
the same pre-processing pipeline to ensure consistency with the training data. The
standardized images are subjected to feature extraction, where relevant attributes are isolated.
These features are then passed to a predictor, which utilizes the trained classifier model to
analyse the data. The predictor determines whether vehicles are present in the input and, if so,
localizes them by drawing bounding boxes around each detected vehicle in the scene.

The primary goal of data collection in the system mentioned is to enhance safety. However,
some individuals may perceive it as an invasion of privacy. Bloom et al. (2017) revealed that
a significant number of people expressed discomfort with the idea of data being collected. In
modern systems, data processing often involves sharing information with third parties, such as
traffic management systems, which raises further privacy concerns.
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.. Fortunately, techniques like Transport Layer Security (TLS), Differential Privacy (DP), and
* K-anonymity are already being used to address this issue (Allen and Dierks , 1999 ; Dwork
and Roth, 2013; Wang et al., 2020). Another concern is data retention.

According to the European Data Protection Supervisor (2019a), there have been cases where
users of car rental services were able to access and control vehicle systems, underscoring the
importance of limiting data storage. Data should not be retained indefinitely; the European
Data Protection Supervisor (2019b) recommends establishing a defined retention period for
stored information. Similarly, the European Data Protection Board (EDPB) advocates for
mechanisms that allow users to delete their personal data (EDPB, 2021). A further solution
involves adopting a privacy-by-design approach, which emphasizes data minimization—
particularly in applications such as pedestrian detection—by collecting only what is strictly
necessary (EDPB, 2021).

From an ethical perspective, companies must ensure transparency with all stakeholders
regarding the types of data collected, the purposes for collection, how the data is processed,
and who has access to it (European Data Protection Supervisor, 2019b). Clear, visible
notifications—such as stickers on vehicles to inform pedestrians that they are being
recorded—can also contribute to greater awareness and accountability (Krontiris et al., 2020).
Nonetheless, despite these efforts, current legislation remains insufficient and fails to address
the full range of potential scenarios (IEEE Spectrum, 2024).

CLASSIFICATION OF PEDESTRIAN DETECTION METHODS
Vehicle detection techniques can be categorized into three main branches: Classical Methods,
Deep Learning Methods, and Hybrid Methods (Fig. 2).

Classical Methods

This category includes traditional computer vision methods that use hand-crafted features and
conventional algorithms, which were common before deep learning became prominent.
Techniques like Histogram of Oriented Gradients (HOG), Support Vector Machines (SVM),
and other feature-based approaches are part of this group. While these methods established
the foundation for vehicle detection, they often struggle with complex scenarios compared to
modern techniques.

Deep learning Methods

Deep learning techniques have revolutionized vehicle detection by enabling the development
of more advanced and robust models. These approaches can generally be categorized into
three main types:

1) Anchor-Based Methods: These techniques rely on predefined anchor boxes to predict
bounding boxes around vehicles. They are typically divided into:

- One-stage detectors, such as You Only Look Once (YOLO) (Redmon et al., 2016)
and Single Shot Detector (SSD) (Liu et al., 2016; Chen et al., 2022; Cao et al., 2020),
which perform detection in a single step. These models offer faster inference but may
compromise on accuracy.

- Two-stage detectors, such as Fast Region-based Convolutional Neural Network (Fast
R-CNN) (Girshick, 2015; Arora et al., 2022), which first generate region proposals
and then classify them. This approach typically achieves higher accuracy at the cost of
increased computational complexity.

2) Anchor-Free Methods: These models eliminate the need for predefined anchor boxes
by directly predicting object locations from the image. Notable examples include
CenterNet (13; 34) and Fully Convolutional One-Stage Object Detection (FCOS)
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(Tian et al., 2019; IEEE Xplore, 2025a). Anchor-free methods are often simpler and
can achieve faster inference with competitive performance.

3) Attention-Based Methods: These methods incorporate attention mechanisms to
enhance detection performance by focusing on the most informative regions of the
image. Attention improves feature representation and is particularly effective in
complex scenes. Prominent examples include the Detection Transformer (DETR)
(Carion et al.,, 2020; S. P. & Mohandas, 2023) and Vision Transformers (ViT)
(Dosovitskiy et al., 2020).

Hybrid Methods

These methods aim to build robust systems by integrating classical and deep learning
techniques. They strive to balance traditional feature extraction with modern deep learning
models, leveraging the strengths of both approaches while addressing their limitations.

]
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Fig. 2. Categorisation of different vehicle detection techniques.

Here is a summary of some state-of-the-art papers:
Li et al. (2023): This paper addresses the issue of low detection accuracy in vehicle and
pedestrian detection models by incorporating a Convolutional Block Attention Module
(CBAM) into the cross-stage partial Darknet-53 (CSPDarknet53)-tiny module to enhance
feature extraction capabilities and mitigate the limitations of using a single attention module.
Additionally, the original simple convolutional module is replaced with a Cross Stage Partial
Dense Block Layer (CSP-DBL) to better preserve high-resolution features and improve
detection accuracy. The public BDD100K dataset (BDD100K, 2024) is used for evaluation,
employing average precision (AP), mean average precision (mAP), and recall as performance
metrics. The proposed model achieves the highest precision and an mAP of 88.74%. The
results also show improvements in recall by 0.73% for cars and 0.01% for people. However,
the model records the lowest speed, with only 63 FPS.
Xiong et al. (2023): This paper presents an improved lightweight YOLOX real-time vehicle
detection algorithm that enhances both detection speed and accuracy while reducing
parameter count. It introduces a lightweight backbone feature extraction network and a new a-
Complete Intersection-over-Union (a-CloU) loss function to improve regression accuracy and
convergence. Inspired by GhostNet, two new modules are proposed:

- The Cross Stage Partial Ghost Module (CSPGhost Module or CSPGM), which splits

input feature maps into two parts—one passes through stacked Ghost modules and the
other merges via a cross-stage pathway.
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- The CGM structure, which also splits input features into two branches, adjusts the
output channel on one side and uses a derived feature map on the other before
combining them.

The a-CloU loss function retains CloU’s benefits but emphasizes high-loU targets,
optimizing detection frame regression without increasing inference time. The modified model
is evaluated on the BIT-Vehicle dataset (Dong et al., 2015), which includes 9,850 images
across categories like Bus, Microbus, Minivan, Sedan, SUV, and Truck. Metrics used include
parameter count, model size (MB), FPS, and mAP@0.5. The results show a 0.99%
improvement in mAP, a 41.2% reduction in parameters, and a 12.7% increase in FPS
compared to the original YOLOX-S.

S. P. and Mohandas (2023): The authors address DETR’s limitations in detecting small
features and its slow training convergence. To enhance performance, they reduce the number
of layers to 40, use a shortcut layer instead of max-pooling, and introduce a Spatial Pyramid
Pooling (SPP) block. The model employs a modified ResNet-50 for feature extraction,
followed by a transformer with a multi-head self-attention encoder-decoder and a feedforward
network (FFN) for end-to-end detection. It is trained on the MS COCO 2017 dataset (Papers
with Code, 2024a) and evaluated using a custom video dataset from KELTRON (KELTRON,
2024) for vehicle detection. Evaluation metrics include precision, recall, mAP, FLOPS, and
FPS. The model achieves a mAP of 51.31% on MS COCO 2017, outperforming SSD,
YOLOvV3-tiny, and the baseline DETR, but records the lowest FPS at 53, highlighting the
need for speed optimization in real-time applications. Additionally, it shows a significant
mAP improvement of 0.03 in the Wilcoxon test.

Hong et al. (2020): This study tackles the problem of detecting multi-scale vehicle targets—
particularly small ones—in traffic surveillance videos. It proposes a codec-based vehicle
detection algorithm built upon YOLOvV3. The method introduces a new multi-level feature
pyramid that integrates a codec module to better detect vehicles across various scales. Multi-
level features from the backbone are stitched into basic features, passed through the codec
module, and merged with equivalent-scale decoder features for final detection. This enhances
YOLOV3’s capability in vehicle detection, especially for small targets.

Table 1. State Of The Art

Paper Architecture Dataset Results

Lietal. (2023) YOLOV4 tiny* BDDI100K - Achieves an 88.74% mAP. A
(2024) lower speed of 63 FPS.

Xiong et al. (2023) YOLOX-based BIT-Vehicle - 0.99% increase in mAP. 41.2%
(Dong etal.,  reduction in parameters.
2015) - 12.7% increase in FPS compared

to the original YOLOX-S.

S P and Mohandas DETR-SPP MS COCO - Achieved 51.31% mAP,

(2023) 2017 (Papers  outperforming SSD, YOLO V3 tiny
with Code, and baseline DETR.
2024a)
KELTRON
(2024)

Hong et al. (2020) YOLOv3-based KITTI (Geiger - On  KITTI, the algorithm

et al. 2013) achieved average precisions

95.04%, 92.39%, and 87.51% for



= -UA- easy, moderate, and hard
~ DETRAC subsets.
(Papers with - On UA-DETRAC, the algorithm

Code, 2024b)  significantly improved over YOLOV3
across all detection conditions.
Hao et al. (2023)] CPAM Network -MS COCO - Outperformed most of the other
(Lin et al. , detectors on both datasets.
2014)
-UA-
DETRAC
(Wen et al.,
2020)

In traffic surveillance videos. The key innovations of this article can be sited as follow:

- A YOLOV3 Integration: The algorithm introduces the YOLOvV3 algorithm to multi-
scale vehicle detection in traffic videos and improves upon it.

- Feature Encoding and Decoding Structure Module: A module is proposed to generate
high-order multi-scale feature maps through a simple U-shaped structure.

- Attention Mechanism: A special diagnosis module integrated with an attention
mechanism enhances the model’s expression ability.

The evaluation of the proposed method is conducted using two main datasets: the KITTI
dataset (Geiger et al., 2013), which was captured while driving in the rural areas surrounding
Karlsruhe—including the city itself and nearby highways—and the UA-DETRAC dataset
(Geiger et al., 2013), a real-world benchmark for multi-object detection and tracking. UA-
DETRAC comprises 10 hours of video footage recorded with a Canon EOS 550D camera
across 24 distinct locations in Beijing and Tianjin, China. The videos were recorded at 25
frames per second (fps) with a resolution of 960 x 540 pixels.

As for evaluation metrics, average precision (AP) is used to assess the performance of the
proposed architecture.

- On the KITTI dataset, the results show that the proposed algorithm achieves an AP of
95.04%, 92.39%, and 87.51% for the easy, moderate, and hard subsets, respectively—
outperforming YOLOv3 by 2.49%, 3.68%, and 9.73% in each subset while
maintaining competitive speed relative to other models.

- On the UA-DETRAC dataset, the proposed algorithm also demonstrates significant
improvements over YOLOV3 across all detection conditions: easy, medium, hard, full,
sunny, rainy, night, and cloudy.

Hao et al. (2023): This paper addresses the challenge of multi-target vehicle detection in
intelligent transportation systems (ITS), with a specific focus on detecting small and distant
vehicles. To that end, the authors propose a network called Corner Pooling with Attention
Mechanism (CPAM), which enables anchorless detection. The main contributions of the
CPAM network include:

- Hourglass with Coordinate Attention (Hourglass-CA) as the backbone: Based on
Hourglass-104 but reduced to 54 layers to lighten the network and increase speed.
Three collaborative attention mechanisms are introduced into the decoder to extract
key information at three feature scales: 384, 384, and 256.

-  Multi-Level Attention Network (MLA): Designed to enhance feature maps
generated by the backbone using attention mechanisms at multiple scales, this module
improves detection accuracy for vehicles of various sizes—especially smaller ones.



- Multi-Level Attention Loss Function: Calculates the discrepancy between predicted
and ground-truth attention maps, allowing the network to prioritize relevant features
and correct deviations during the upsampling process.

The model is evaluated on two major datasets: MS COCO (Lin et al., 2014), which includes
three vehicle types (car, bus, truck), and UA-DETRAC (Wen et al., 2020), which emphasizes
detection under occlusion.

Evaluation results:

- On UA-DETRAC, the architecture achieves a mAP of 70.64%, outperforming
detectors such as Faster R-CNN, YOLOv3, CenterNet, and CornerNet. The model
scores 90.72%, 74.12%, and 52.94% in the easy, medium, and hard subsets,
respectively. It also performs well across weather conditions, with a mAP of 76.16%
(cloudy), 78.62% (sunny), and 59.37% (rainy).

-  On MS COCO, it achieves an AP of 43.3%, AP50 of 59.2%, AP75 of 46.9%, APs of
24.4%, APm of 44.8%, and APl of 57.5%.

CRITICAL ANALYSIS

Current research demonstrates a clear shift toward combining multi-scale fusion, attention
mechanisms, and lightweight backbones to improve both accuracy and efficiency. Traditional
HOG-based approaches continue to benefit from modern refinements. For instance, standard
HOG achieves 93% accuracy but suffers from errors due to inaccurate hypothesis generation
(Cheon et al., 2012); enhanced HOG reaches 97% accuracy with near real-time performance,
though it remains somewhat computationally demanding (Niknejad et al., 2012). Region-
driven HOG (RDHOG) further boosts accuracy to over 99% on traffic footage but proves
ineffective in complex scenes with heavy occlusions (Wu et al., 2014).

Meanwhile, Haar-like cascades achieve sub-5ms detection per window but fail in occluded or
high-density traffic scenarios (IEEE Xplore, 2025b). Even deformable part models (DPM)
improve through PCA-based filter compression and FFT-accelerated convolutions—reducing
parameters by 30% and accelerating matching—yet continue to struggle with overlapping
objects (Ma and Xue, 2024). Hybrid models such as Dense-ResNet architectures, which
combine residual and dense connections, outperform YOLOv3 by more than 5 AP on small
and medium vehicles but require two to three times more memory and approximately 50%
longer training time (Sun et al., 2019).

Two-stage frameworks like the Improved Region-based Convolutional Neural Network for
Vehicle Detection (IRCNN-VD) eliminate background pixels using SIFT, incorporate hard
negative mining, and leverage evolutionary hyperparameter tuning. This approach achieves
0.85 mAP on the BOXY dataset (Behrendt, 2019) in under 1 ms—twice the speed of Faster
R-CNN—though it incurs high computational cost and lacks robustness in adverse weather
conditions (Djenouri et al., 2022). Similarly, Retinex preprocessing combined with a NAS-
optimized ResNetl01 backbone and IoU-guided anchors boosts UA-DETRAC mAP from
62.13% to 68.25%, and small-vehicle AP from 14.16% to 43.64%, but operates at less than 2
FPS (Luo et al., 2021).

Attention-enhanced architectures show further promise. As demonstrated by Li et al. (2023),
incorporating CBAM into CSPDarknet53-tiny along with CSP-DBL yields 88.74% mAP on
BDD100K, with improved recall for cars and pedestrians, while maintaining 63 FPS. In
another study, a streamlined YOLOX-S variant reduces parameters by 41.2%, increases mAP
by 0.99%, and improves FPS by 12.7% on the BIT-Vehicle dataset (Xiong et al., 2023).
Transformer hybrids also deliver strong results: DETR-SPP, which integrates spatial pyramid
pooling and a reduced ResNet-50 backbone, improves MS COCO mAP to 51.31%,



_ outperforming SSD-YOLOV3 tiny, albeit at a lower speed of 53 FPS (S P and Mohandas,

©2023).
In more challenging visibility scenarios, a Swin Transformer adaptation for hazy conditions
achieves 91% AP on a custom Haze-Car dataset and 82.3% on the Real Haze-100 dataset,
though at a modest cost to speed (Sun et al., 2022). A codec-based, multi-level feature
pyramid combined with attention mechanisms and integrated into YOLOv3 delivers 95.04%
AP on the KITTI dataset and significant improvements on UA-DETRAC under easy,
medium, and hard settings (Hong et al., 2020). Finally, the anchor-free CPAM network—
featuring an Hourglass-CA backbone, multi-level attention modules, and a specialized
attention loss function—achieves 70.64% mAP on UA-DETRAC and maintains strong AP
scores under various weather conditions, along with competitive results on MS COCO (Hao
etal., 2023).
Based on these findings, it is clear that traditional approaches offer low complexity and real-
time performance but struggle in occlusion-rich or high-density environments. In contrast,
deep learning-based methods significantly improve accuracy and small-object detection but
introduce higher computational demands and reduced robustness under adverse conditions.
Furthermore, attention-enhanced and transformer-based models advance detection under
occlusion, multi-scale, and low-visibility scenarios, but require greater processing time and
more powerful hardware.
This highlights the importance of developing context-specific solutions rather than aiming for
a universal vehicle detection model.

FEATURE DIRECTIONS

As previously discussed, occlusion remains one of the primary challenges that vehicle
detection models must address. Real-world environments are highly dynamic, ranging from
sunny to rainy, foggy, and other adverse weather conditions that often obscure vehicle
visibility. These environmental variations significantly affect a model’s ability to accurately
detect and recognize vehicles. At present, most algorithms are optimized for specific settings,
and no universal solution has been developed that can adapt effectively across diverse
conditions. This limitation underscores the importance of designing a unified framework that
integrates multiple detection strategies to ensure robustness in varying weather scenarios
(Berwo et al., 2023).

Beyond environmental variability, achieving a balance between detection speed and accuracy
also presents a significant design challenge. In most cases, improvements in one metric tend
to come at the expense of the other, which can diminish the system’s overall robustness in
real-world applications (Berwo et al., 2023).

Given that the backbone of a deep learning model plays a crucial role in its performance,
much of the current research is directed toward designing more advanced and efficient
backbone architectures. These efforts aim to facilitate the delicate balance between speed and
accuracy, which remains central to the development of high-performance vehicle detection
systems (Berwo et al., 2023).

CONCLUSION

Vehicle detection is a vital area in computer vision, playing a key role in enhancing
technologies like driver assistance systems. Despite challenges such as occlusion, varying
object scales, and complex backgrounds, researchers are still continuing to try to develop
more advanced and robust detection methods. While relatively significant progress has been
made, the field still offers many opportunities for further research and innovation.
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