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Abstract. Predicting mortality is an important field of study that aids in making wise
healthcare decisions and offers insightful information about population health. Using
demographic and hospital-service data from the University Hospital Center of Oran
(CHUO), Algeria, this study employs machine learning (ML) models to forecast the
ultimate causes of mortality. Sex, city of residence, hospital services used, and the
beginning, intermediate, and ultimate causes of death are among the factors included in
the 12.604 records that make up the dataset. To find trends and forecast the causes of
death in eight distinct groups, six machine learning models—Logistic Regression (LR),
Random Forest (RF), Support Vector Machine (SVM), Naive Bayes (NB), Multilayer
Perceptron (MLP), and Extreme Gradient Boosting (XGBoost) were trained and
assessed. XGBoost achieved an accuracy and specificity of 84.05%, with a precision of
42.73%, recall of 25.53%, and an F1 score of 28.33%, the model outperformed the other
evaluated models, proving its ability to effectively capture intricate relationships in the
data. The study demonstrates how machine learning techniques can be used to examine
a variety of variables and find significant patterns in mortality trends. This work
enhances predictive analytics in healthcare by utilizing local data and sophisticated
algorithms, providing useful instruments for directing public health initiatives. The
results highlight how machine learning can improve healthcare outcomes and solve
issues connected to mortality in Algeria.
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INTRODUCTION

The health of a population and the efficiency of its healthcare system are both significantly
influenced by mortality rates. The mortality rate in Algeria raises serious issues related to
public health. Algeria's crude death rate, which has been rather steady in previous years, was
recorded as 4.329 deaths per 1.000 inhabitants in 2022 (Algeria - Death Rate, Crude, 2025).
Although it has decreased from prior years, infant mortality is still a concern, with a rate of
17.365 deaths per 1.000 live births in 2025 (Algeria Infant Mortality Rate, 1950-2025). There
are issues with maternal mortality as well; in 2020, there were 78 fatalities for every 100,000
live births (Algeria Maternal Mortality Rate, 2000-2025). Furthermore, no communicable
illnesses are responsible for almost 74% of all fatalities in Algeria, highlighting the necessity
of strong predictive technologies for efficient health outcome management (Algeria, 2025).

In this regard, machine learning (ML) presents revolutionary possibilities by facilitating
precise mortality forecasts derived from intricate datasets. To find important predictors of
mortality, these models can analyze a variety of variables, including demographics, medical
diagnoses, and healthcare consumption patterns (Herndndez Guillamet et al., 2023; Qiu et al.,
2022).

In hospital settings, where prompt identification of high-risk patients can direct therapies and
resource allocation, the use of machine learning for mortality prediction is especially
beneficial (Krasowski et al., 2022).

The goal of this work is to employ machine learning models trained on data from the
University Hospital Center of Oran (CHUO), Algeria, to predict the ultimate causes of death
for eight different classes. The dataset contains information on initial, intermediate, and final
causes of death, sex, city of residence, and hospital services. In order to increase predicted
accuracy and enhance our comprehension of mortality patterns, this study uses models such as
LR, RF, SVM, NB, MLP and XGBoost. The main objectives of this work are:

DEVELOPING PREDICTIVE MODELS

Using data from the Oran University Hospital Center, ML models LR, RF, SVM, NB, MLP,
and XGBoost will be trained and assessed to predict the final cause of death across eight
classes.

- Improving Mortality Prediction: By using clinical and demographic characteristics
including sex, city of residence, hospital services, and causes of death at different
stages, it is possible to increase the accuracy and reliability of mortality prediction.

- Improving Healthcare Analytics: To demonstrate how ML can revolutionize
healthcare analytics in Algeria by utilizing local datasets to create customized
solutions that can direct public health initiatives meant to lower avoidable deaths by
identifying trends and risk factors linked to various causes of death.

The rest of this paper is as follows: Section 2 provides the background and discusses the
fundamentals of mortality prediction, along with the associated challenges. Related works are
reviewed in Section 3. The proposed approach for mortality prediction at CHUO is detailed in
Section 4. Section 5 presents the results and discussion. Finally, Section 6 offers a conclusion
and outlines directions for future work.

BACKGROUND

With the growing availability of electronic health records (EHRs) and sophisticated
computational tools, machine learning (ML) techniques for mortality prediction have become
a crucial topic of healthcare study.

This section examines the main ideas surrounding mortality prediction and how they apply to
the current investigation.



Importance of Mortality Prediction in Healthcare

A key component of modern healthcare systems is mortality prediction, which helps
physicians evaluate patient risks, distribute resources efficiently, and create individualized
treatments. For instance, prompt identification of high-risk patients in intensive care units can
greatly enhance outcomes by enabling early interventions. According to studies, ML models
perform more accurately than conventional scoring systems like SAPS III and APACHE 1V;
some of them even reach an area under the curve (AUC) of 92.9% (Olang et al., 2024). These
developments highlight how ML can revolutionize clinical decision-making.

Machine Learning Models in Mortality Prediction

ML offers a robust framework for analysing complex and heterogeneous datasets
characteristic of healthcare environments. Models such as RF, SVM, XGBoost, and neural
networks have been applied successfully to predict mortality across various contexts:

- All-Cause Mortality: Research employing datasets such as MIMIC-III (Wang et al.,
2020) has shown that by integrating factors including vital signs, test findings, and
demographic data (Qiu et al., 2022; Lee and Tsoi, 2025), feature-rich ML models can
attain excellent predictive accuracy for all-cause mortality.

- Disease-Specific Mortality: ML has been used to predict mortality in some situations,
such as pancreatitis, sepsis, and stroke, frequently outperforming conventional
techniques (Olang et al., 2024; Lee and Tsoi, 2025).

- Chronic Conditions: ML models have been employed to accurately predict both
long-term and short-term death in patients with chronic and complex illnesses by
utilizing readily available characteristics and healthcare resource utilization data
(Hernandez Guillamet et al., 2023).

Challenges in Mortality Prediction

ML models in mortality prediction encounter several challenges:

Data Quality: Many studies emphasize the significance of high-quality datasets for the
training of dependable models. Absence of values or the presence of noisy data might
substantially degrade model efficacy (Wang, 2024; Pias et al., 2025).

- Model Responsiveness: Some researchers have revealed shortcomings in the capacity
of ML models to detect swiftly worsening health problems or severe injuries,
highlighting the necessity for additional enhancement (Pias et al., 2025).

- Generalizability: Ensuring that models exhibit robust performance across varied
patient populations is a primary priority. Tailoring models for certain patient
populations or medical scenarios may mitigate this issue (Olang et al., 2024; Pias et
al., 2025).

RELATED WORKS

The cause of death is a critical outcome in clinical research; nevertheless, access to cause-of-
death data is still restricted. Several studies have been performed to classify mortality status
and ascertain particular causes of death.

Kim et al. (2021) create and validate a machine-learning model to forecast the cause of death
based on a patient's most recent medical examination. The model employed a stacking
ensemble approach to classify all-cause mortality and eight predominant causes of death in
South Korea, as well as other causes. Clinical data from national claims (n=174.747) and
electronic health records (n=729.065) were utilized for model building and validation, with
external validation conducted on data from three US claims databases (n=994.518, 995.372,
407.604). The model exhibited superior performance, attaining an AUROC of 0.9511 for



» predicting cause of death within 60 days, and 0.8887 for external validation. Significantly,
11.32% of fatalities in the Medicare Supplemental database were ascribed to malignant
neoplastic illness. Lee et al. (2025) utilized the MIMIC-III dataset to forecast all-cause in-
hospital mortality through sophisticated feature engineering.

Essential variables, encompassing vital signs, laboratory results, and demographic data, were
employed to train the models. Of the models evaluated, RF had the superior performance,
achieving an AUROC of 0.94. The research underscored the essential role of feature
engineering and the application of SHAP values (Lundberg and Lee, 2017).

in elucidating how specific features influence a model's predictions, hence underlining their
importance in developing robust models that might improve clinical decision-making. In the
literature, the authors introduce the IMPACT framework, which leverages explainable
artificial intelligence (XAI) techniques to interpret a state-of-the-art tree ensemble model for
predicting all-cause mortality (Qiu et al., 2022). The framework is utilized on the NHANES
dataset (NHANES Questionnaires, Datasets, and Related Documentation, 2025), which
includes 47.261 samples and 151 characteristics, to examine mortality across 1-, 3-, 5-, and
10-year follow-up intervals. The findings indicate that IMPACT surpasses conventional
linear models and neural networks in terms of accuracy. The approach identifies neglected
risk variables, interaction effects, and correlations between laboratory characteristics and
mortality, indicating possible modifications to existing reference intervals. The research
formulates interpretable mortality risk ratings, guaranteeing generalizability by temporal and
external validation with the UK Biobank dataset, so rendering these scores available to both
healthcare professionals and the public. Shahidi et al. (2023) utilized ML algorithms to
forecast mortality among people in continuing care in Alberta, along with their comorbidities.
LR and several ML algorithms were employed to assess the 60-day mortality risk,
demonstrating superior predictive performance. Authors emphasized the need of including
demographic and clinical characteristics for predicting short-term mortality.
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Fig. 1. The proposed Approach overview.

Hernandez Guillamet et al. (2023) investigate the utilization of ML for forecasting death in
patients with chronic and intricate illnesses, with the objective of improving resource
allocation and decision-making in healthcare. A classification system was employed to
forecast both long-term mortality (over four years) and early death (within six months)
utilizing available factors and healthcare resource utilization.

The XGBoost model attained an 87% accuracy in predicting long-term mortality, but the
Gradient Boosting (GRBoost) model exhibited a lower efficacy for early mortality, with an
accuracy of 83%. A variety of evaluation criteria, such as recall, accuracy, F1l-score, and



-
ol

AUC, were employed to evaluate the model's performance. Nistal-Nufio (2021) compared
gradient-boosted decision trees and logistic regression models for predicting 12-hour
mortality in ICU patients using 1-hour resolution physiological data (eight parameters over 5
hours) from the MIMIC-III database.

The model achieved an AUROC of 0.89 versus 0.806 for logistic regression, along with
higher accuracy (0.814 vs. 0.782), diagnostic odds ratio (17.823 vs. 9.254), and improved
metrics including Cohen’s kappa, F-measure, and Matthews correlation coefficient. These
results highlight that the model enhanced ability to handle unbalanced datasets for mortality
prediction, likely due to its capacity to model complex interactions in ICU data. Garcia-Gallo
et al. (2020) developed a 1-year mortality prediction model for sepsis patients using clinical
data from the first 24 hours of 5.650 MIMIC-III admissions (70% training, 30% validation).

A Stochastic Gradient Boosting algorithm, combined with LASSO for variable selection,
achieved an AUROC of 0.8039, outperforming traditional scores like SAPS II, SOFA, and
OASIS. The results highlight the superiority of machine learning approaches for long-term
mortality prediction in sepsis care. Iwase et al. (2022) leveraged random forest machine
learning to predict ICU mortality and stay duration with high precision using admission data
from 12.747 patients at Chiba University Hospital.

The RF model achieved exceptional performance, notably an AUC of 0.945 for mortality and
0.881-0.889 for stay length, outperforming conventional methods. Lactate dehydrogenase
was pinpointed as the most influential variable, aiding both outcome prediction and patient
clustering based on mortality risk.

These works collectively underscore significant progress in ML for mortality prediction,
especially in the application of varied datasets, enhancement of interpretability, and
consideration of cause-specific outcomes. This work introduces a dataset derived from the
electronic health records (EHRs) of mortality data from CHUO, Algeria, which has been
meticulously collected, cleaned, and structured. To the best of our knowledge, no current
research in the literature have employed a dataset that differentiates between several phases of
causes, such as initial and intermediate causes of death, to determine the final cause of death.

PROPOSED APPROACH

The proposed approach covers several essential steps (Fig. 1): Data preprocessing includes
cleaning data, handling missing values, encoding categorical variables, removing duplicates
and inconsistencies, and aggregating similar conditions to minimize the number of classes.
(2) Data Splitting divides the dataset into training and testing subsets; (3) Feature Selection
emphasizes the identification of pertinent features from the dataset; and (4) Classification
involves training various classification models and evaluating their performance to determine
the most effective one for the task.

CHUO Mortality Dataset

The dataset used in this work was collected from the administrative records of the admissions
office of the CHUO, Algeria. These records were submitted by general practitioners and
comprise unprocessed data on 13.091 patients who died during hospitalization over a 12-
month period, from March 2018 to February 2025. The dataset has 11 variables that contain
demographic, geographical, and medical information regarding the deceased patients.

Table 1 presents a summary of the raw dataset's composition and principal characteristics.
This dataset offers a rich foundation for analyzing mortality trends and training
ML algorithms to forecast final causes of death. This work aims to contribute important
insights into mortality prediction in Algerian hospitals by utilizing its unique features and
comprehensive information.
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Table 1. Chuo Raw Dataset’s Structure and Attributes.

Attribute Description Occurrences/Details

Identif Unique identifier for each patient -

Month Month of death (1 to 12) -

Year Year of death (2018 to 2025) -

Sexe Gender of the patient Male: 7.627; Female: 5.465

Age Age of the patient (1 day to 99 years) [0-18]: 3.310; [19-25]: 243;
[26-50]: 1.968; [51-75]:
4.954; >75:2.343

city res Wilaya (province) of residence Patients from 136 different
ci

Wilaya dec Wilaya where death occurred - v

Service Hospital service where the patient Data from 75 different

died hospital services

Cause_death_init Initial cause of death 2.539 occurrences

Cause_death_iterm Intermediate cause of death 1.450 occurrences

Cause_death_final Final cause of death 330 occurrences

Data Preprocessing

Effective data preprocessing is a crucial step in ensuring the quality and reliability of any
dataset analysis. Below, we detail the key steps undertaken to preprocess the mortality dataset

from CHUO, Algeria:

Data Cleaning:

The first step in preprocessing was to clean the dataset by addressing inconsistencies and

C1TorS:

- Duplicate and Inconsistent Values: We identified and removed duplicate entries and
inconsistent data points. Additionally, rare causes of death were excluded to focus on

the most relevant patterns.

- Error Correction: Data entry errors were corrected to improve accuracy.
After the cleaning process, 487 records were removed, leaving 12.604 valid records for

analysis.

Handling Missing Values:

Missing data can significantly impact the quality of analysis. To address this issue:
- Identification of Missing Values: The attribute "Age" was found to have 274 missing

values.

- Imputation Technique: These missing values were replaced with the mean age,
ensuring that no records were excluded while maintaining statistical integrity.

Categorical Encoding:

The dataset contained several categorical variables (gender, city, hospital services, and causes
of death). We applied one-hot encoding to transform categorical variables into numerical

representations, making them suitable for computational analysis.

Class Aggregation:
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, Similar causes of death were aggregated into broader categories. This reduced the number of

distinct classes for final causes of death to 8 categories (Table 2). This aggregation simplified
the classification process while maintaining the clinical relevance of the information.

Table 2. The eight classes of final causes of death.

Class ID Final causes of death Total occurrence
1 Cardiac Respiratory Arrest 9.531

2 Acute Respiratory Failure 1.915

3 Shock State - Septic - Cardiogenic - Hypovolemic 680

4 Multi-organ Failure 161

5 Neurological Failure 148

6 Heart Failure 59

7 Hemorrhagic - Embolic Causes 56

8 Renal - Electrolyte Failure 54

Data splitting
To train our models, the data was divided into two sets: 80% for the training set and 20% for

the testing set. To address the issue of imbalanced classes, we ensured that the class

distribution was proportionally identical in both the training and testing sets. This
stratification guarantees fair representation of each class (Fig. 2).
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Feature Selection
The dataset has 12.604 samples (rows) and 11 characteristics (columns). Every row signifies
a deceased patient. The attributes Identif, Month, Year, city res, and Wilaya dec were
omitted from the model training phase due to their lack of relevance for prediction. The
attribute Cause_death_final was selected as the target variable for prediction.

Classification

In this work, several machine learning classification models were trained to predict the final
causes of death. The models utilized include LR, RF, SVM, Naive Bayes, MLP and
XGBoost. The training process was optimized using the Adam optimizer, with the dataset
split into 80% for training and 20% for testing.

RESULTS & DISCUSSION

The algorithms were developed and tested on a PC with an Intel(R) Core(TM) 15-10400F
CPU @ 2.90GHz, 16 GB RAM, and a 6 GB NVIDIA GTX 1660 Super graphics card. The
Python libraries scikit-learn, Keras and Tensorflow were utilized for development.

Results

As shown in Fig. 3, the performance of each model is assessed using standard classification
metrics. By comparing these metrics across all models, the best-performing algorithm for
predicting final causes of death is identified.

WAccuracy M Precision MRecall WF1Score M Specificity

8208 805

83,38

80,64

713

80,64

LR RF SVM NB MLP XGBOOST

Fig. 3. Performance metrics for Each Model Classifier.

For instance, the Confusion matrix of the 8 classes for XGBoost model classifier is shown in
Fig 4.
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Discussion

The provided results, as indicated in Table 3, show a significant variance in model
performance across various machine learning algorithms for predicting causes of death using
patient demographics, initial causes of death, and intermediate causes of death.

All models showed suboptimal precision (21.47%-44.98%) and recall (19.22%-31.83%)
despite moderate accuracy (79.13%-84.05%), while LR performed the worst (35.94%
accuracy) due to its linear assumptions failing to capture complex relationships in non-linear,
imbalanced data.

XGBoost was the best-performing model with 84.05% accuracy and a 28.33 F1-score. This
disparity between low positive-class metrics and high specificity points to systemic
limitations: (1) Class imbalance most likely skewed predictions toward majority classes,
increasing accuracy but reducing sensitivity to rarer causes of death; (2) The limited
availability of demographic and hospital-service features, as opposed to the rich clinical
biomarkers or comorbidities typically used in high-performing models, constrained
discriminative power and reduced accuracy in predicting precise causes of death.

Table 3. Performance metrics for Each Model Classifier.

Models  Accuracy Precision Recall F1 Score Specificity
LR 35.94 21.47 31.83 17.15 35.94

RF 83.38 35.03 23.55 25.28 83.38
SVM 82.98 44.98 24.47 26.70 82.98
NB 80.64 24.93 23.71 23.73 80.64
MLP 79.13 22.11 19.22 19.07 79.13
XGBoost 84.05 42.73 25.53 28.33 84.05

CONCLUSION AND FUTURE WORKS

This study analyses demographic, hospital-service, and causes of death data from CHUO,
Algeria, to demonstrate how ML models can be used to forecast the causes of mortality at
different stages. Although class imbalance and limited scope of features caused problems for
all models in terms of precision and recall, XGBoost showed the highest accuracy (84.05%)
among the tested models. These results highlight the necessity of more comprehensive
datasets, such as comorbidities and clinical biomarkers, in order to enhance prediction
performance.



., Despite these drawbacks, this work emphasizes how important it is to use ML and local data
© to guide public health initiatives and improve mortality prediction in Algeria.
Class imbalance and feature restrictions are the main causes of the low precision, recall, and
F1-scores shown in all models. To address these challenges, key strategies can be addressed:

- Class Imbalance Mitigation: Models tend to prefer majority classes over minority
class predictions because of the dataset's unequal distributions of death causes.
Rebalancing class representation might be aided by adding data from more hospitals
to the dataset. Additionally, it has been demonstrated that using sophisticated
synthetic oversampling methods, like ADASYN, can increase F1-scores by 18-22%
in comparable medical datasets (Abdulsadig and Rodriguez-Villegas, 2024 ; Dube
and Verster, 2023).

- Feature Augmentation: Enhancing the dataset with richer features, such as temporal
symptom patterns or social determinants of health, could significantly improve
predictive accuracy. Clinical models that incorporate such detailed data have
consistently demonstrated better performance in mortality prediction tasks (Lee and
Tsoi, 2025; Dube and Verster, 2023).

- Hybrid Approaches: Combining resampling techniques with threshold tuning has
proven effective in addressing imbalanced datasets. Such hybrid methods can improve
precision by 35-48% in mortality prediction models with similar challenges (Gupta
and Gupta, 2024; Dube and Verster, 2023).
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