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Abstract. Vibrations in crude oil pipelines can occur due to the flow of crude oil, 

pumps, wind, earthquakes, and human activities. When vibrations are combined with 

corrosive environments and dissolved gases, especially CO₂, they can accelerate 

corrosion and ultimately lead to failure. In this study, a novel vibration immersion test 

was conducted in the laboratory under various temperatures and low CO₂ dissolved gas 

pressures to investigate the corrosion rate in API 5L X60 steel pipelines. The 

experimental 1991 De Waard-Lotz-Milliams correlation and a neural network method 

were used to evaluate the effects of CO₂ gas levels on overall corrosion rates. The 

results indicate that temperature, CO₂ partial pressure, and vibration directly influence 

corrosion rates. The corrosion rate increases uniformly at constant vibration and CO₂ 

partial pressure as temperature rises, exceeding 1%. At constant vibration and 

temperature, corrosion rates increase uniformly by less than 1% with increasing CO₂ 

partial pressure. 

 

Keywords. Dissolved CO₂ gas, Vibration immersion test, Salts, ANN method, 

Corrosion. 

 

INTRODUCTION 

Pipeline networks are the key arteries for delivering crude oil and its products. Corrosion of 

pipeline networks is a significant issue in crude oil transportation. Crude oil contains various 

corrosive components, including water, CO₂ (g), H₂S (g), organic chlorides, organic acids, 

sulfur, and bacteria. Carbon dioxide (CO₂) is present in oil fields at varying concentrations 

and is considered the primary cause of corrosion-related failures (Li et al., 2021). 

The vibration of crude oil pipelines results from different sources, such as pumps, wind, 

crude oil flow, and its contents, especially gases (Al-Hashimy et al., 2016). Various 

experimental and numerical methods are used to estimate corrosion rates, but only a few can 
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be applied in the case of vibration effects. The most suitable method for incorporating the 

effect of vibration is immersion testing (Jones, 1996).  

Several studies and models on the CO₂ corrosion process have been developed, but most 

neglect the effect of vibration phenomena on corrosion rates.  

De-Waard and Lotz (1993) developed a semi-empirical model for CO₂ corrosion rates, which 

simulates the impact of dissolved CO₂ gas and operating conditions on corrosion rates.  

Nesic et al. (1997) used a neural network approach to develop a CO₂ corrosion rate model, 

demonstrating that their model's extrapolation capabilities were comparable to other models. 

Kermani et al. (2003) studied the corrosion process of dissolved CO₂ gas and showed that 

CO₂ partial pressure, concentrations of corrosive species, temperature, and pH levels are the 

main factors influencing CO₂ corrosion.  

Dai et al. (2012) demonstrated that interactions between the pipe walls, supports, and the 

fluid flowing through the pipe are the primary causes of vibrations. It was found that the 

maximum allowable vibration amplitude for process pipelines is 0.2 mm at a maximum 

frequency of 40 Hz.  

Amarasinghe et al. (2021) studied CO₂ dissolution and convective mixing in oil under 

realistic reservoir temperature and pressure conditions. They found that CO₂ dissolution in oil 

or water leads to oil swelling, viscosity changes, and wettability alteration. 

In this paper, the vibration-induced corrosion of API 5L X60 steel pipelines is studied in the 

presence of dissolved CO₂ gas. Tests were conducted at various temperatures and low CO₂ 

pressures using an experimental immersion test on a vibrating pipeline. The results of the 

static immersion test were then compared with those of the vibration immersion test. 

 

MATERIAL AND CRUDE OIL SOLUTION 

Commercial API 5L X60 steel pipelines were used in southern Iraq to transport crude oil 

from various oil fields to the port of Basrah for export. The specimens used for immersion 

testing have dimensions of 50 × 25 × 5 mm, in accordance with ASTM G31 (1999). A total 

of 80 specimens were tested under both static and vibration conditions. The chemical 

composition of the API 5L X60 steel pipeline is listed in Table 1. 

 

Table 1. Chemical composition of API 5L X60 steel pipeline (Guang, 2018). 

Elements C Si Mn P S V Nb Ti Fe 

% 0.16 0.45 1.65 0.02 0.01 0.08 0.05 0.04 Balance 

 

The crude oil samples for testing were taken from the South Rumaila oil fields in southern 

Iraq. Table 2 presents the physical properties and dissolved gases obtained from the field 

laboratory. Table 3 shows the specific gravity measured in the laboratory at different 

temperatures and pressures after injecting CO₂ gas into the oil solution. 

 

Table 2.Physical properties of South Rumaila crude oil. 

Propertie API 

Sulfure 
Water 

content 
Asphalt 

pH 

TAN H2S CO2 O2 NaCl 

% 
mgKOH/gm 

oil 
(g) 

Value 30.2 2.92 0.75 1.45 5.8 0.112 1 0.96 0.96 13 

 

 

 

 



 

 
 

Table 3.Measured specific gravity (ν) of South Rumaila crude oil. 

Temperature  

(
o
C) 

Specific gravity as 

received 

Specific gravity at different pressure  

(MPa) 

0.2 0.4 0.6 0.8 

30 0.8973 0.8672 0.8523 0.8410 0.8317 

35 0.8851 0.85731 0.8484 0.8402 0.8306 

40 0.8707 08420 0.8351 0.8244 0.8176 

45 0.8648 0.8315 0.8242 0.8201 0.8105 

 

IMMERSION VIBRATION CORROSION TEST METHOD 

Fig. 1 shows a schematic diagram of the immersion equipment system and apparatus 

assembled in the laboratory according to ASTM-G32-03 (Gatto et al., 2023). The apparatus 

consists of a water bath equipped with a shaker. A thermocouple was used to measure the 

temperature of the solution during the test. A vibration meter was used to measure the 

vibration. The vibration meter, model HHVB82, was manufactured by Omega Engineering, 

Stamford, CT, China, while the thermocouple used is a 2-Channel Dual Handheld digital 

thermocouple manufactured by Harold G. Schaevitz Industry LLC, USA. The 500 ml 

capacity beakers were fixed on the heater plates and filled with a crude oil solution. A CO₂ 

gas container was used to supply CO₂ gas during the test. 

The immersion test was conducted at temperatures of 30, 35, 40, and 45°C, over a 180-day 

exposure period. At the tested temperatures, the corrosion mass loss was recorded over a total 

of 180 days at specific intervals of 15 days. One liter of water was mixed with 50 g of sodium 

hydroxide and 200 g of zinc dust and boiled to create the cleaning solution (ASTM G1-90). 

The sample was removed from the oil solution, washed with kerosene to eliminate any 

remaining crude oil, and then submerged in the cleaning solution for 1 minute to remove the 

oxidation layer. The specimens were air-dried at room temperature. The specimens were then 

weighed, and their mass loss was recorded. The corrosion rate (Cr) was calculated by 

assuming uniform corrosion over the surface of the specimen as follows (Gatto et al., 2023): 

    
   

     
       (1) 

Where, K = 8.76*10
4
 for Cr in mm/year,   is the mass density of steel in kg/m

3
, A is the total 

surface area of specimen cm
2
 and t is time of immersion in hr.  

 

 
Fig 1.Schematic diagram of the immersion test apparatus. 



 

 
 

ARTIFICIAL NEURAL NETWORKS 

Artificial neural networks (ANNs) mimic certain fundamental aspects of brain function 

(Mamoon et al., 2023). A neuron is the basic unit of a neural network, and its shape and size 

may vary depending on its function (Christopher, 2010).  

The simplest neural network consists of neurons, inputs, weights, a summation function, an 

activation function, and an output. The summation function calculates the neuron's net input, 

as given in Eq. (2). 

     ∑        
 
       (2) 

Where,NETi :  the weighted sum of the input to the ith processing element,iand j : the 

processing elements, wij : the weights of the connections between ith and jth processing 

elements, xj : the output of the jth processing element andWbi : the weights of the biases 

between layers.  

Fig. 2 shows the structure of the ANN model used. The activation function, which processes 

the net input of the neuron, defines the output of the neuron.  

Several functions, such as the threshold function, step activation function, and sigmoid 

function, are used to define the activation function. The sigmoid function is commonly used 

for the transfer function and generates a value between 0 and 1 for each value of the net 

input. The logistic transfer function of the ANN model used in this study is given by: 
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Fig 2.The structure of the ANN model. 

 

There were seven input parameters in the network: API,     , % NaCl, %  water, stresses, 

E_W (equivalent weight), ν, and T. There was one output parameter: corrosion rate. The root 

mean square error (RMSE) and the correlation coefficient (R²) values were used for 

comparison (Lin et al., 2017) as follows: 
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Where, t is the goal value, o is the output value, and p is the number of samples. 

The determination of the optimal number of neurons in the hidden layers of the model is 

presented in Table 4. Trials were conducted using the Levenberg–Marquardt (LM) learning 

algorithm. According to Table 4, the optimal configuration for the input, hidden, and output 

layers is 7-13-1. 
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Table 4. The optimal number of neurons in hidden layers obtained from ANN model. 

Learning 

algorithm 

Number of 

neurons 

Training data Testing data 

RMSE R
2 

RMSE R
2 

LM 7-10-1 0.1043 0.9632 0.0930 0.9540 

LM 7-11-1 0.1047 0.9678 0.0962 0.9483 

LM 7-12-1 0.0944 0.9555 0.0931 0.9644 

LM 7-13-1 0.0845 0.9110 0.0882 0.9514 

LM 7-14-1 0.0946 0.9473 0.0931 0.9453 

LM 7-15-1 0.0959 0.9337 0.0945 0.9588 

LM 7-16-1 0.0924 0.9550 0.0950 0.9633 

LM 7-17-1 0.0980 0.9588 0.0828 0.9623 

LM 7-18-1 0.1075 0.9578 0.0910 0.9468 

LM 7-19-1 0.1081 0.9589 0.0942 0.9394 

 

The 1991 De Waard-Lotz-Williams Correlation 

The 1991 correlation is essentially similar to the 1975 equation in terms of formulation and 

variables, with the exception of the fugacity term, f(CO₂), which replaces the previous carbon 

dioxide partial pressure term, P(CO₂). The equation is stated as follows (De Waard et al., 

1991): 

          
    

     
         (     (6) 

Where, T is temperature in (K) and      is CO2 fugacity in (MPa). In this paper the Peng-

Robinson equation of state was used for calculating the fugacity coefficient of CO2 dissolved 

in crude oil (Elliott and Carl, 2012). 

A summary of the results from the 1991 De Waard-Lotz-Williams correlation, the ANN 

model, and the static immersion experimental test is presented in Figs. 3, 4, 5, 6, 7, and 8, 

respectively. As shown in Table 2, the crude oil has an acid value of 0.112 mg KOH·g⁻¹, 

indicating low acidity. Initially, the crude oil has a pH of 5.8. The change in pH results from 

CO₂ dissolving in the water present in the crude oil. As CO₂ dissolves in water, it forms 

carbonic acid, which increases the acidity of the crude oil solution. This process is described 

by Palmer et al. (1983): 
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 ⇔           
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As seen in Figs. 3, 4, 5, 6, 7, and 8, with the increase in temperature and CO₂ partial pressure, 

the corrosion rate gradually increases. The main reason is that as the partial pressure of CO₂ 

increases, more CO₂ combines with water molecules in the solution, which increases the 

concentration of H₂CO₃ and intensifies its ionization. As a result, the concentration of H⁺ ions 

in the solution increases, leading to a decrease in pH and an acceleration of the corrosion 

reaction, ultimately causing an increase in the corrosion rate. 

The corrosion rate results from the effects of dissolved CO₂ gas in crude oil, contributing 

significantly to the total immersion corrosion rate, as seen in Figs. 2–8. 

For pressures of 0.2, 0.4, 0.6, and 0.8 MPa at T = 30°C, the percentage rates are 15.89% 

(0.0110/0.0692 × 100%), 17.40% (0.0120/0.0692 × 100%), and 18.18% (0.0126/0.0692 × 

100%). At 0.2, 0.4, 0.6, and 0.8 MPa and T = 45°C, the corresponding values are 17.49% 

(0.0462/0.2641 × 100%), 17.68% (0.0467/0.2641 × 100%), and 19.27% (0.0509/0.2641 × 

100%). 



 

 
 

Figs. 9, 10, 11, and 12 show corrosion rates obtained from static and vibrational immersion 

tests at varying temperatures and CO₂ partial pressures. The vibration frequency was set at 40 

Hz with an amplitude of 0.2 mm for all vibration tests. Based on the results, vibration 

increased the corrosion rate compared to static conditions. However, corrosion rates do not 

increase uniformly. Increasing the temperature and CO₂ partial pressure affects the corrosion 

rate values and leads to an increase.  

The difference between static and vibrational corrosion rates in crude oil is relatively small 

during the first two months of immersion testing. However, this trend reverses with longer 

immersion times. This is due to the fact that longer immersion times result in higher 

corrosion reaction rates on the specimen surface, i.e., greater dissolution of the steel under the 

continuous attack of corrosive ions and agents, which eventually causes increased weight 

loss. 

The results showed that the solubility of CO₂ improved with increasing pressure under 

vibrational conditions. Therefore, the corrosion rate is enhanced since CO₂ solubility may 

increase due to vibration. On the other hand, temperature plays a role in the solubility of CO₂ 

in crude oil. CO₂ solubility increases significantly when crude oil has low viscosity, as it is 

easier for CO₂ to diffuse into the oil phase as the temperature rises (Ziegler et al., 2003). 

 

 

Fig. 3 Corrosion rate (mm/year) obtained from static test at 30
o
C. 

 

Fig. 4 Corrosion rate (mm/year) obtained from static test at 35
o
C. 



 

 
 

 

Fig. 5 Corrosion rate (mm/year) obtained from static test at 40
o
C. 

 
Fig. 6 Corrosion rate (mm/year) obtained from static test at 45

o
C. 

 

Fig. 7 Corrosion rate obtained from immersion static test at various temperatures. 

 

Fig. 8 Corrosion rate obtained from immersion static test at various temperatures. 



 

 
 

As shown in Table 2, it is noticeable that NaCl has an effect on the CO₂ corrosion state. The 

reaction between NaCl and CO₂ is given as follows (Hamidi et al., 2017): 

         →         
      (10) 

The general CO₂ corrosion rate of carbon steel significantly decreases with increasing NaCl 

concentration. Crude oils contain sulfur heteroatoms in the form of elemental sulfur (S), 

dissolved hydrogen sulfide (H₂S), carbonyl sulfide (COS), inorganic forms, and, most 

importantly, organic forms in which sulfur atoms are positioned within organic hydrocarbon 

molecules. The reaction between dissolved CO₂ and H2S gases can form carbonyl sulfide and 

water (Cao et al., 2023): 

        ⇔        (11) 

High temperatures have the effect of changing sulfur from a non-reactive or poorly reactive 

form into a highly reactive one. This is because CO2 and H2S, when dissolved, react and form 

solid sulfur layers. Since a solid sulfur layer (composed of iron rust from API X60 carbon 

steel and solid sulfur) is brittle, the vibration process affects the corrosion product, causing it 

to exfoliate easily, which leads to increased corrosion rates. 

As the temperature rises, the corrosion rate increases because higher temperatures accelerate 

all electrochemical corrosion processes, including CO2 dissociation, ion transport of species, 

and chemical reactions. CO2 gas dissolved in water forms carbonic acid (H2CO3), releasing 

H+ ions. Carbonic acid is a weak and unstable acid, and the release of H+ ions acidifies the 

crude oil solution, increasing the rate of corrosion. Additionally, crude oil contains some H2S, 

which is considered an additional source of hydrogen ions during tests, thus promoting the 

corrosion process, especially at low pressure and temperature. 

Generally, the corrosion rate increases with the rise in CO2 partial pressure for both static and 

vibrational conditions. However, it has been found that the vibration process has little effect 

on the corrosion rate at lower pressures but becomes more significant as the CO2 partial 

pressure increases. 

On the other hand, as indicated in Table 3, when the partial pressure of CO2 dissolved in 

crude oil increases, it reduces the crude oil's viscosity, which affects the results. The 

enhancement of asphalt precipitation may be due to chemical reactions between the injected 

CO2 and water, leading to the formation of carbonic acid, which destabilizes asphalt. The 

decrease in pH may reduce asphalt stability, causing serious damage through asphalt 

precipitation. Additionally, the vibration process can lead to premature coking and asphalt 

deposition in crude oil, enhancing the separation process, which impacts the corrosion 

process (Fang et al., 2013; Fetisov et al., 2018). 

As indicated in Figures 8-11, the corrosion rates for static and vibrational conditions at 0.2 

MPa and T = 30°C are 0.0485 and 0.0552 mm/year, respectively. This shows that vibration 

increases the corrosion rate by (0.0552/0.0485) × 100% = 1.06%. The values obtained at 0.2 

MPa and T = 45°C are 0.2881 and 0.3084 mm/year, respectively, indicating an increase of 

(0.3084/0.2881) × 100% = 1.07%. The corrosion rates for static and vibrational conditions at 

0.8 MPa and T = 30°C are 0.1159 and 0.1227 mm/year, respectively, showing an increase of 

(0.1227/0.1159) × 100% = 5.86%. The values obtained at 0.8 MPa and T = 45°C are 0.3656 

and 0.3829 mm/year, respectively, reflecting an increase of (0.3829/0.3656) × 100% = 

4.73%. Other temperatures and partial CO2 pressures show similar results. 

 



 

 
 

 
Fig. 9 Corrosion rate (mm/year) obtained from static and vibration corrosion test at 30

o
C 

 

 
Fig. 10 Corrosion rate (mm/year) obtained from static and vibration corrosion test at 35

o
C 

 

 
Fig. 11 Corrosion rate (mm/year) obtained from static and vibration corrosion test at 40

o
C. 



 

 
 

 
Fig. 12 Corrosion rate (mm/year) obtained from static and vibration corrosion test at 45

o
C. 

 

CONCLUSION 

Using a self-assembled test rig, the effect of CO₂ partial pressure on the corrosion of API 5L 

X60 pipeline steel was studied in simulated crude oil through corrosion coupon testing and 

corrosion morphology observations. When compared to values obtained from the ANN 

model, the CO₂ corrosion rates derived from the 1991 De Waard-Lotz-Milliams correlation 

under varying temperatures and CO₂ partial pressures exhibit a fair degree of accuracy. The 

corrosion rate increases with the rise in CO₂ partial pressure in both static and vibrational 

conditions. However, it was found that the vibration process has little effect on the corrosion 

rate at lower pressures, but its influence increases with higher CO₂ partial pressures. At 

constant vibration and CO₂ partial pressure, with increasing temperature, the corrosion rate 

increases uniformly by a constant percentage greater than 1%. Conversely, at constant 

vibration and temperature, with increasing CO₂ partial pressure, the corrosion rate increases 

uniformly by a constant percentage less than 1%. 
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