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Abstract. In recent years, there has been a growing interest in the field of underwater 

image enhancement, driven by its significance in underwater robotics and ocean 

engineering. Initially, research efforts focused on physics-based approaches, but with 

advancements in technology, the utilization of deep convolutional neural networks 

(CNNs) and generative adversarial networks (GANs) has become prevalent.  

These state-of-the-art algorithms have shown impressive results; however, their 

computational complexity and memory requirements pose challenges to their practical 

implementation on portable devices used for underwater exploration tasks. Furthermore, 

these models are often trained on either synthetic or limited real-world datasets, limiting 

their applicability in real-world scenarios. 

In this paper, we propose a novel deep neural network architecture that maintains high 

performance while reducing the number of parameters compared to existing state-of-

the-art models. Our approach aims to address the computational and memory limitations 

associated with underwater image enhancement algorithms. By leveraging the strengths 

of our architecture, we demonstrate its generalization capability by evaluating its 

performance on a combination of synthetic and real-world datasets. This approach 

enhances the practicality and applicability of our model in real-world underwater 

scenarios. 

The findings presented in this paper lay the foundation for further exploration and 

development in this field. 
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INTRODUCTION  

The field of underwater robotics is experiencing rapid growth and is being driven by 

extensive research efforts. One prominent development in this area is the advancement of 

autonomous underwater vehicles (AUVs), which are deployed to address various challenging 

engineering problems. These include tasks such as underwater surveillance, seabed mapping, 

underwater archaeological exploration, garbage collection, underwater rescue operations, and 

military applications. To effectively tackle these challenges, real-time interpretation of images 

and videos is crucial for AUVs to intelligently perceive the underwater environment and take 

appropriate actions. 

However, underwater images inherently suffer from degradation caused by wavelength-

dependent absorption and forward/backward scattering due to particles present in the water. 

This degradation leads to reduced visibility, decreased contrast, color deviations, and even the 

introduction of color casts. These limitations significantly hinder the usability of underwater 

images in downstream tasks that rely on underwater vision, such as tracking, classification, 

and detection. Moreover, underwater images tend to have a dominant green or blue hue, as the 

red wavelengths are absorbed more profoundly in deep water. 

These inherent challenges emphasize the need for effective techniques to enhance and 

improve the quality of underwater images. By addressing issues such as visibility, contrast, 

color accuracy, and color casts, it becomes possible to enhance the applicability of underwater 

vision for various tasks performed by AUVs. Consequently, developing robust algorithms and 

methodologies for underwater image enhancement is crucial to overcome the limitations 

imposed by underwater conditions and optimizing the performance of AUVs in real-world 

scenarios. 

Overall, the advancements in underwater robotics and the challenges associated with 

underwater image quality pave the way for innovative research and technological 

breakthroughs. By overcoming the limitations imposed by underwater environments, we can 

unlock the full potential of AUVs and enable them to operate effectively in diverse 

underwater applications. 

To address the aforementioned challenges, the initial step before undertaking any downstream 

tasks involving underwater image interpretation is image improvement. This process 

encompasses tasks such as image enhancement, image restoration, and specific methods 

tailored to particular tasks. In our study, our primary focus is on image enhancement, as it 

plays a vital role in the real-time alleviation of the problems associated with underwater 

images by restoring their perceptual and statistical qualities. 

Underwater image enhancement methods have the advantage of extracting image information 

without relying on prior knowledge about the specific underwater environment. This 

characteristic makes them more generalized compared to image restoration methods. The 

existing literature in this field mainly revolves around very deep Convolutional Neural 

Networks (CNNs) and Generative Adversarial Network (GAN)-based models (Anwar and Li, 

2020). These approaches address various aspects such as noise removal, contrast stretch, 

combined improvement using multiple information sources, and deep learning techniques for 

image dehazing. 

However, the major drawback of these advanced models lies in their high computational and 

memory requirements, rendering them unsuitable for real-time underwater image 

enhancement tasks. Consequently, to enhance the deployability of machine learning models 

and reduce their compute and memory demands while maintaining comparable performance 

to state-of-the-art models, we propose our novel model. 

By developing our model, we aim to strike a balance between computational efficiency and 

performance. Our model addresses the limitations posed by heavy computational and memory 

requirements, making it more suitable for real-time underwater image enhancement 



 
 

 
 

applications. Through our research, we strive to improve the practicality and usability of 

machine learning models in this domain, paving the way for more efficient and deployable 

solutions in underwater image enhancement. 

In summary, our proposed model aims to optimize the trade-off between computational 

demands and performance, enabling real-time underwater image enhancement with 

comparable results to existing state-of-the-art models. By reducing the computational burden 

while maintaining effectiveness, we seek to contribute to the development of more practical 

and deployable solutions in this field. 

 

BACKGROUND 

In recent years, numerous methods have been proposed to tackle the task of image 

enhancement, which can be broadly categorized into three groups: non-physical models, 

physical model-based methods, and deep learning methods. 

Non-physical models (Yang et al., 2022) primarily improve image quality by adjusting pixel 

values without relying on a specific mathematical equation. On the other hand, physical 

model-based (Wang et al., 2021) methods aim to formulate the degradation process of the 

image by estimating the parameters of a model. However, both of these approaches alone are 

not sufficient for effective underwater image enhancement, as they often overlook the specific 

properties associated with underwater conditions. 

Deep learning methods (Almutiry et al., 202) have shown promising results in image 

enhancement, particularly in addressing color correction challenges. These methods primarily 

utilize generative adversarial networks (GANs) and convolutional neural networks (CNNs) to 

achieve notable improvements. In our study, we have conducted a detailed review of the 

current state-of-the-art GAN-based models and CNN-based models, which have demonstrated 

impressive performance in underwater image enhancement. 

By focusing on color correction, deep learning methods tend to outperform non-physical and 

physical model-based methods in the context of underwater image enhancement. The 

utilization of GANs and CNNs enables these models to learn complex representations and 

capture specific underwater image characteristics more effectively. 

Through our comprehensive review, we aim to provide a thorough understanding of the 

advancements in GAN-based and CNN-based models for underwater image enhancement. By 

evaluating and analyzing the state-of-the-art approaches, we can gain insights into their 

strengths, limitations, and potential for further improvement. 

In summary, deep learning methods, particularly GANs and CNNs have emerged as powerful 

tools for addressing color correction challenges in underwater image enhancement. By 

examining and scrutinizing the current state-of-the-art models, we can gain valuable 

knowledge and contribute to the ongoing progress in this field. 

 

Funie-gan  

The proposed approach (Islam et al., 2020) addresses image blurring by formulating it as an 

image-to-image translation problem, assuming the presence of a non-linear mapping between 

distorted and enhanced images. Through adversarial training on a large-scale dataset, a 

conditional GAN-based model learns this mapping. However, an issue arises as the model 

incorrectly models sunlight and amplifies background noise, resulting in over-saturated or 

under-saturated images. 

 

Water-net 

The architecture under consideration  (Li et al., 2019)  is a gated fusion CNN, trained on the 

UIEB dataset (Li et al., 2017), specifically designed for underwater image enhancement. In 



 
 

 
 

order to align with the unique characteristics of degraded underwater images, the Water-Net 

model incorporates three enhanced inputs: White Balance (WB), Gamma Correction (GC), 

and Histogram Equalization (HE). However, the complex nature of this CNN architecture 

presents a challenge in dealing with the adverse effect of backscatter. 

UNDERWATER DATASET 

In our study, we extensively examined a diverse range of underwater image datasets, 

encompassing both synthetically generated and real-world underwater images. We 

specifically selected three datasets, which we will describe in detail below, to evaluate and 

benchmark the generalization capabilities of our model against state-of-the-art models trained 

on these datasets. 

 

EUVP Dataset  

The EUVP Dataset (Enhancement of Underwater Visual Perception) (Islam et al., 2020) is a 

comprehensive collection consisting of 10,000 paired images and 25,000 unpaired images. 

These images were captured by the authors Islam et al (2020) during oceanic explorations 

under various visibility conditions. The paired images were created by applying a distortion 

model based on Cycle GAN to real-world images, thus simulating underwater distortions. For 

the training-validation phase of our model, we utilize a subset of the Image Net paired images 

from the EUVP dataset. Additionally, we employ another subset called EUVP-Dark, which 

consists of a pair of highly degraded images, for testing our model's performance. 

 

UIEB Dataset 

The UIEB dataset (Li et al., 2019) (Underwater Image Enhancement Benchmark) comprises a 

collection of 890 real underwater images captured under varying lighting conditions. These 

images exhibit diverse color ranges and degrees of contrast. The authors of the dataset have 

provided corresponding reference images that are free from color casts and demonstrate 

improved visibility and brightness compared to the original source images. We evaluate the 

performance of our model on this dataset as it represents a real-world underwater dataset with 

reference images obtained without the use of synthetic techniques. 

 

EVALUATION METRICS 

In our study, we performed a quantitative evaluation of the output images generated by our 

model using standard metrics proposed by Yang et al. (2022). Including Peak Signal-to-Noise 

Ratio (PSNR) and Structural Similarity Index Measure (SSIM). These metrics provide an 

assessment of the structural similarity and reconstruction quality of the enhanced output 

image compared to the corresponding reference image. 

Furthermore, we analyzed the quality of the generated output images using a non-reference 

underwater image quality measure (UIQM). The UIQM incorporates three underwater image 

attribute measures: image colorfulness (UICM), sharpness (UISM), and contrast (UIConM). 

Each attribute evaluates a specific aspect of underwater image degradation. The UIQM is 

computed using the formula: 

                                 × UIConM    (1) 

The values of the parameters c1, c2, and c3 are set to 0.0282, 0.2953, and 3.5753, 

respectively, as specified in the paper by Panetta et al. (2015). 

To assess the quality of model compression and acceleration, we calculated compression rates 

and speed-up rates, as proposed by Cheng et al. (2017). The compression rate (M, M*) is 

determined by the ratio of the number of parameters of the original model M (α(M)) to the 

number of parameters of the compressed model M* (α(M*)). Similarly, the speed-up rate (M, 



 
 

 
 

M*) is calculated by dividing the testing time for one image for the original model M (β(M)) 

by the testing time for one image for the compressed model M* (β(M*)). 

In summary: 

Compression rate (    )  
 ( ) 

 (  )
 

Speed-up rate (    )  
 ( ) 

 (  )
 

M represents the original model 

M* represents the compressed model 

These metrics provide valuable insights into the performance and efficiency of our model, 

both in terms of image quality and computational resources. 

 

OUR PROPOSED APPROACH 

In this section, we will begin by providing a detailed explanation of the proposed architecture, 

including its components and the calculations performed within the network. Following that, 

we will discuss the evaluation metrics used to assess the performance of the model. 

 

Network ARCHITECTURE 

Figure 1 illustrates the architecture diagram of our proposed model. The model consists of a 

fully connected convolution network that is connected to three densely connected 

convolutional blocks in a sequential manner. A skip connection is employed, where the input 

image is concatenated with the output of each block. The input to our model is an RGB 

underwater image with dimensions of 256x256 pixels. 

The raw input image is initially passed through the first convolutional layer with a kernel size 

of 3x3, resulting in the generation of 64 feature maps. This is followed by a Rectified Linear 

Unit (ReLU) activation layer. Subsequently, the image flows through three convolution 

blocks. Finally, a convolution layer with 3 kernels is applied to generate the enhanced 

underwater image. 

 

 
Fig. 1. Our proposed model architecture. 

 

The convolutional blocks (convblocks)  

Within our architecture, there are two sets of convolution layers, each followed by a dropout 

layer and a Rectified Linear Unit (ReLU) activation function. After passing through the 

ConvBlocks, the output is then fed into an additional Convolutional Layer with a Rectified 

Linear Unit (ReLU) activation function. This setup allows for the concatenation of the raw 

input image from the skip connection. 

The purpose of these ConvBlocks, in combination with the skip connection, is to prevent 

overfitting of the network to the training data. By incorporating these blocks, we promote the 



 
 

 
 

generalization ability of the network, allowing it to perform well on unseen data beyond the 

training set. This serves as a measure to mitigate the risk of overfitting and enhance the 

overall performance of the model. 

 

Skip connections  

In our model, we employ concatenation to merge the raw input image with the output of each 

residual block. This approach is specifically designed to tackle the issue of vanishing 

gradients by giving more significance to the channels associated with the raw input image 

when compared to the channels generated by the ConvBlocks. 

By incorporating these skip connections, our model ensures that feature learning occurs in 

each block while also preserving crucial characteristics from the original raw image. This 

design allows the network to combine the learned features from the ConvBlocks with the 

intrinsic information contained in the base raw image, resulting in a more comprehensive and 

enriched representation of the input data. 
 

The network loss function  

Used to train the model encompasses multiple terms to achieve different objectives. It aims to 

preserve the sharpness of edges, enforce structural and texture similarity in the enhanced 

image, and account for pixel-wise differences. The loss function consists of two main 

components: 

a- Mean Squared Error (MSE) Loss: The MSE loss calculates the pixel-wise mean 

squared differences between the estimated image I and the clear ground truth image 

I*. 

     = 
   

 
∑ (   
 
   -   

 )
2 

(1)
                     

b- VGG Perceptual Loss: The perceptual loss, based on the work of Johnson, Alahi, and 

Fei-Fei (Johnson et al., 2016), is defined using the ReLU activation of the last 

convolutional layer in a pretrained VGG Network. Both the enhanced image I and the 

ground truth clear image I* are passed through this layer to obtain their respective 

feature representations. The perceptual loss, denoted as LVGG, measures the distance 

between these feature representations.      = distance(feature(I), feature(I*)) 

By incorporating these two loss components, the model learns to minimize both the pixel-

wise differences and the perceptual differences between the enhanced image and the ground 

truth clear image, leading to improved image quality and fidelity. 

The final loss L, is calculated as the summation of the two losses. 

        =       +    (2) 

 

EXPERIMENTAL EVALUATIONS 

In order to assess the performance of our model, we conducted both qualitative and 

quantitative comparisons with state-of-the-art underwater image enhancement methods on 

synthetic and real-world underwater images. The methods we compared against include 

WaterNet (Li et al., 2019), FunIE-GAN (Islam et al., 2020), and Deep SESR (Islam et al., 

2020). To ensure fairness in evaluation, we utilized the model checkpoints provided by the 

respective authors to obtain their best results. 

Training and Validation Data For training and validation, we utilized the EUVP Underwater 

ImageNet dataset. This dataset consists of a diverse collection of images captured under 

various visibility conditions using different cameras such as GoPros and low-light USB 

cameras. Paired images with ground truth clear versions were generated using CycleGAN 

(Islam et al., 2020).The EUVP dataset offers location and perceptual quality diversity, making 

it suitable for training a model that can generalize to other underwater datasets. We trained 



 
 

 
 

our model on 6,128 images and validated it on 515 images. The input images had various 

resolutions, including 800 × 600, 640 × 480, 256 × 256, and 224 × 224, which were resized to 

256 × 256 before training. 

 

Network IMPLEMENTATION AND TRAINING  

Our model was implemented using the PyTorch deep learning framework. We utilized the 

ADAM optimizer with a learning rate of 0.0002 for the training process. To prevent 

overfitting, dropout layers were applied with a rate of 0.2. The batch size was set to 1, 

meaning that one image was processed in each iteration during training. 

Training the model over 50 epochs required approximately ten hours of computational time. 

The training process was performed on a system equipped with an Intel(R) Core(TM) i7-

8750H CPU, 16GB RAM, and an Nvidia GTX 1060 GPU.  

 

Testing data sets 

 To evaluate the transferability of our model to different datasets, we tested it on a variety of 

synthetic and real-world images. Specifically, we used the following datasets: 

 (a) EUVP Dark (Islam et al., 2020): Under the EUVP dataset, a separate dataset was created 

comprising 5,500 paired images with a dark underwater background. We chose a subset of 

1,000 images from this dataset to evaluate our model. 

(b) UIEB (Li et al., 2019): For simulating real-world underwater scenes, we utilized the 

Underwater Image Enhancement Benchmark Dataset (UIEBD). This dataset comprises 890 

paired underwater images that were captured under various light conditions, exhibiting a 

diverse color range and degrees of contrast. To generate the reference images, meticulous 

pairwise comparisons were performed. 

By evaluating our model on these various datasets, we aimed to assess its transferability and 

performance in different underwater image enhancement scenarios. 

 

RESULTS 

In this section, we provide an analysis of the experimental results, both quantitatively and 

qualitatively. Our proposed model exhibits comparable performance across all three test 

datasets, as illustrated in Table 1. 

 

Table 1.Underwater image enhancement performance metric. 

Metric Dataset Waternet FunIEGAN Deep SESR Ours 

PSNR EUVP 25.33 26.36 26.11 27.39 

UIEB 19.11 20.13 19.36 18.99 

SSIM EUVP 0.80 0.82 0.81 0.83 

UIEB 0.79 0.73 0.73 0.69 

UIQM EUVP 3.02 2.84 2.66 2.77 

UIEB 2.69 2.69 2.65 2.98 

 

Table 2.Model compression performance metric.  

Models # Parameters Compression 

Ratio 

Testing per 

image (secs) 

Speed-Up 

Our model 2,19,560 1 0.02 1 

Waternet 10,60,636 3.96 0.60 25 

FunIEGAN 25,62,023 11.17 0.18 7 

Deep SESR  43,12,707 18.57 0.20 9 

 



 
 

 
 

When evaluating model compression and acceleration, the proposed model exhibits a lower 

number of trainable parameters compared to all three state-of-the-art models, making it more 

lightweight for on-device deployment in different locations and conditions, as indicated in 

table 2. 

Furthermore, our model  demonstrates faster processing of test images, making it suitable for 

real-time underwater image enhancement applications. 

Analyzing the results for each test dataset, as presented in Table 1, the following observations 

are made: 

EUVP-Dark: our model  outperforms all other models in terms of PSNR, SSIM, and UIQM 

metrics. Despite being trained on images with better lighting conditions, Shallow-UWnet 

effectively enhances color hues and sharpens the images. This highlights the generalization 

capabilities of Shallow-UWnet. 

UIEB Dataset: the model also performs well on this near real-world dataset. WaterNet, trained 

on the UIEBD, achieves better performance than our model. Despite being trained on 

synthetic datasets, both our model and Deep SESR exhibit comparable performance ranges 

for this dataset. 

A comparative visual analysis of the performance of these models on the three datasets can be 

observed in figure 2. 

 

     Hazed              Waternet         FunIE-GAN  Deep SESR      Ours               Clear  

 
Fig. 2. Underwater image enhancement for two datasets and multiple models. 

 

CONCLUSION 
The application of convolutional neural networks in computer vision extends to underwater 

images. Our proposed model maintains comparable quantitative performance while requiring 

18 times fewer trainable parameters and achieving 10 times faster testing. It is noteworthy that 

our model demonstrates generalization capabilities on diverse datasets, highlighting its 

potential for real-world applications. 
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